GaBi databases 2018 (Service Pack 36) in openLCA

Version: openLCA 1.7.4 Date: 14 November 2018 Author: Salwa Burhan GreenDelta GmbH, Müllerstrasse 135, 13349 Berlin, Germany gd@greendelta.com

Greendelta

Content

3	Feedback & Contact	•7
2.1	General modelling	5
2	GaBi databases 2018 in openLCA	• 3
1	GaBi databases 2018 – What's new?	. 2

1 GaBi databases 2018 – What's new?

As published by thinkstep¹ in the GaBi website, the GaBi databases 2018 include:

- More than 900 new processes have been added:
 - The GaBi Professional database grew considerably, with 189 new processes.
 - The Energy extension database grew by 152 processes that includes country-specific thermal energy and steam amongst others, while the Full US extension database grew by 156 processes related to steel frame roof and wall insulations, roofing systems, rubber sheet flooring and wall base, aluminium frame, to name a few.
 - With 413 new processes, End of Life extension database gained the maximum number of new processes, related mainly to material and country-specific wasteto-energy incineration data sets.
 - The rest of the new processes are included in extension database for construction, food & feed, India, Electronics and Inorganics.
 - Close to 12,000 LCI datasets available as part of gabi database
- Update of all datasets related to energy such as electricity, thermal energy, fuels, etc. (such as change in the reference year to 2014 for all electricity grid mixes and energy carrier mixes)
- Update of datasets related to precious metals, particularly platinum group metals (due to update of metal prices used in allocation of ore-to-metal value chains), renewable products, brick and roof tile amongst others.
- Harmonization and update of steel, deionised water, DE waste incineration, heat pumps, particles from sand & quartz mining, etc. etc.
- For land use assessment, the regionalization in mining and renewable resources datasets (agricultural and wood biomass) which cover the most important sectors of land occupation and transformation was further implemented and harmonized.
- Particles, such as "Dust, unspecified" have been reassigned as "Dust (PM10)" in the light
 of growing awareness and interest in particle sizes with regards to the environment.
 Furthermore, certain banned halogenated substances have been removed from the updated datasets, hence, reduced impact factors for ozone layer depletion potential for
 many datasets in the database.

¹ http://www.gabi-software.com/fileadmin/Documents/Upgrades_and_Improvements_in_GaBi_2018.pdf

- Update of impact assessment methods such as ReCiPe from ReCiPe 2016 to ReCiPe 2016 v1.1:
 - PM/Resp. Inorganics: Secondary particles included, with relevant increase for GaBi datasets in PM impacts (+5 to +500%)
 - Marine EP: added by method developers
 - Terr. Ecotox: corrected by method developers (emissions to urban soil excluded), Human non-cancer changed due to error-correction by ReCiPe method developers

2 GaBi databases 2018 in openLCA

Several modifications from the original ILCD package provided by thinkstep to GreenDelta were carried out during the implementation of the database in openLCA:

• Refactoring of flows to map it to their respective locations to avoid multiple entries of flows with same reference ids, but different locations. (Figure 1)

C. Anniaulture research (regionalized) AT		
Agriculture, mosaic (regionalized) - Al	Name	Agriculture, mosaic (regionalized)
Agriculture, mosaic (regionalized) - AU		
😼 Agriculture, mosaic (regionalized) - BA	Description	
Fø Agriculture, mosaic (regionalized) - BD		
Fø Agriculture, mosaic (regionalized) - BE		
Fø Agriculture, mosaic (regionalized) - BG		
Fø Agriculture, mosaic (regionalized) - BR		
Fa Agriculture, mosaic (regionalized) - CA		
Fø Agriculture, mosaic (regionalized) - CH	_	
Fø Agriculture, mosaic (regionalized) - Cl	Category	Elementary flows > Land use > Land occupation
Fø Agriculture, mosaic (regionalized) - CL	Version	00.00.004
Fø Agriculture, mosaic (regionalized) - CN		
Fø Agriculture, mosaic (regionalized) - CO	UUID	ed30e10a-513f-4eb3-a07a-b5641383e092
Fø Agriculture, mosaic (regionalized) - CZ		2010 10 20717 07 21 0200
Fø Agriculture, mosaic (regionalized) - DE	Last change	2018-10-26117:07:31+0200
Fø Agriculture, mosaic (regionalized) - DK	Infrastructure fl	ow 🗌
Fø Agriculture, mosaic (regionalized) - EE	FI .	
Fø Agriculture, mosaic (regionalized) - ES	Flow type	Fø Elementary flow
Fø Agriculture, mosaic (regionalized) - Fl		
Fø Agriculture, mosaic (regionalized) - FR	 Additional info 	ormation
Fa Agriculture, mosaic (regionalized) - GB		
Fa Agriculture, mosaic (regionalized) - GR	CAS number	
Fa Agriculture, mosaic (regionalized) - HU		
Fa Agriculture, mosaic (regionalized) - ID	Formula	
Fa Agriculture, mosaic (regionalized) - IE		
Fa Agriculture, mosaic (regionalized) - IN	Synonyms	
Fa Agriculture, mosaic (regionalized) - IS		0 F 1 - 1
Agriculture, mosaic (regionalized) - IT	Location	V Estonia
Agriculture, mosaic (regionalized) - m		

Figure 1: mapping flows to the assigned locations

• Refactoring of categories for the flows in the database: the original ILCD package contained a structure of categories with duplicate folders or inconsistent organization (Figure 2).

Figure 2: Before refactoring on the right, after refactoring on the left

- Adapt the GaBi datasets to the modelling requirements of openLCA (e.g. mapping of flow properties and unit groups from openLCA to the gabi flows, etc.).
- Addition of gabi data quality system for the first time with gabi databases in openLCA.

(Figure 3)						
Fg Wetlands (regionalized) - UZ Fg Wetlands (regionalized) - VE Fg Wetlands (regionalized) - VN Fg Wetlands (regionalized) - ZA	✓ Indicators & Scores	Very good	Good	Fair	Poor	Very poor
	Technological representativeness	Technology aspects have been modelled exactly as described in the title and metadata, without any significant need for	Technology aspects are very similar to what described in the title and metadata with need for limited improvements. For	Technology aspects are similar to what described in the title and metadata but merits improvements. Some of the relevant	Technology aspects are different from what described in the title and metadata. Requires major improvements.	Technology a are complete different fror described in and metadat Substantial
 Impact assessment methods Social indicators 		improvement	example: use of generic technologies'	processes are not modelled with specific		improvemen necessary
Global parameters Data quality systems ILCD data quality system	Time representativeness	The data (collection date) can be maximum 2 years old with respect to the	The data (collection date) can be maximum 4 years old with respect to the	The data (collection date) can be maximum 6 years old with respect to the	The data (collection date) can be maximum 8 years old with respect to the	The data (co date) is older years with re the "reference

Figure 3: ILCD Data quality system for the gabi databases

• Implementation of GaBi Impact Assessment methods in openLCA, which can be imported separately through the JSON-LD format. These methods are designed specifically for the new GaBi sp36 databases. Users should keep in mind that using any other impact assessment packages might lead to inaccurate results. (This is because the flows in the other method packages are not mapped to the flows in the exchanges of the GaBi sp36 databases. This was done to maintain the originality of the GaBi databases in openLCA)

• With the expansion in the capabilities of openLCA³, it is now possible to have quantitative references on the input side, thereby, eliminating the issues with waste modelling or processes having no quantitative references on the output.

The next sections contain specific information about some of the modifications done, as well as tips and recommendations for the usage of the GaBi databases in openLCA.

2.1 General modelling

GaBi databases are created with the LCA software GaBi and, therefore, the structure of their datasets is, in some cases, highly influenced by the type of modelling carried out in that software. For instance, it includes:

- Graphical modelling: the user creates the connections in the supply chains manually in the model graph; automatic connections are not feasible. That is one reason because most of the datasets included in GaBi databases are either fully aggregated or partially aggregated processes (i.e. creating thousands of linkages manually as when using unit processes might require too much effort).
- The same flow can be generated by multiple processes within the database (e.g. "electricity", by all electricity mixes).
- Default providers cannot be set within the software, neither are supported by ILCD, which is the format used by thinkstep to provide to GreenDelta the datasets.

Due to all the above-mentioned conditions, it is strongly recommended to create the product <u>systems only linking the default providers</u> for GaBi databases in openLCA. Therefore, please remember to select the "Only link default providers" option in the product system wizard (Figure 4) for provider listing, when creating new product systems.

In case of selecting the "prefer default providers" option in the product system wizard (Figure 4) for provider listing, please check the model graphs to eliminate the unwanted providers to avoid miscalculations in the impact assessment.

³ http://www.openlca.org/openlca/new/

												_	
	_	LCa										×	
	A Welcome	New product syste	em								•		_
	welcome	Creates a new produ	luct system									-	-
W radiator) production mix :	P Gener	creates a new prou	act system								• •		
kW radiator), production mix													
W radiator) production mix	- Gener	Name	Copper pipe	e mix, bare (A1-	-A3), producti	ion mix, at pro-	ducer, techno	ology mix, 1	kg				
A3), production mix, at produ									-				
V (Use), production mix, at pla	Name	Reference process											
(Use), production mix, at plar			Conner nine	miy haro (A1-	A2) productiv	ion mix at prov	ducer techno	ology mix 1	ka - Ell-29				
ction mix, at plant, technolog	Descript		District heati	ing 120-400 kW	V (Use) production	iction mix at n	lant technoli	loav mix 120	NG - LO-20 0-400 FW - C	N			ch allows the st
-water (0/35) (utilization), pro			District heati	ing 20-120 kW	(Use) product	tion mix at nl	ant technolo	av mix 20-1	120 kW - CN				
-water (0/50), production mix			District heati	ing mix, produ	ction mix. at p	plant, technolo	av mix. 10.7	% energy lo	ss during tra	nsmission - EU-2	28		
-water (5/55) (utilization), pro			Electrical hea	at pump Brine-	-water (0/35) ((utilization), pr	oduction mix	x. at plant. el	lectric- drive	n heat pump. 4.4	4 kW thermal pc		
-water (10/35) (utilization), pr			Electrical hea	at pump Brine-	-water (0/50),	production mi	ix, at plant, el	lectric- drive	en heat pum	o, 3.0 kW therma	power per 1 k		
-water (10/50) (utilization), pr			Electrical hea	at pump Brine-	-water (5/55) ((utilization), pr	oduction mix	x, at plant, el	lectric- drive	n heat pump, 2.4	kW thermal pc		
-water (7/55) (utilization), pro	Categor		Electrical hea	at pump water-	-water (10/35)) (utilization), p	production m	nix, at plant,	electric- driv	en heat pump, 5	.5 kW thermal p		
er heater (use), production mi	Version		Electrical hea	at pump water-	-water (10/50)) (utilization), p	production m	nix, at plant,	electric- driv	en heat pump, 3	8.8 kW thermal p		
500m2), production mix, at pla	version		Electrical hea	at pump water-	-water (7/55) ((utilization), pr	roduction mix	x, at plant, e	electric- drive	n heat pump, 3.	0 kW thermal p		
500m2) (Use), production mix	UUID		Electric insta	antaneous wate	er heater (use),), production m	nix, at plant, E	Electric insta	antaneous w	ater heater, for b	uildings, 100% e	~	
) kW (use), production mix, at			<								>		
-400 kW (use), production mi	Last cha											_	
120 kW (use), production mix,	Infrastru		✓ Auto-link	processes									
0°C (utilization), production			Check mu	ulti-provider lin	ıks (experimen	ntal)							
/°C (utilization), production													
0°C (utilization), production			Provider linki	ing									
/ C (utilization), production	▼ Time			default provide	ers								
U KW (Use), production mix, a			0 .										
r < 20 kW (use), production m	Start da		O Prefer d	default provide	ers								
r 120-400 kW (use), production in			Only lir	nk default prov	viders								
r 120-400 kW (Use), productio	End dat		Desferred										
r 20-120 kW (use), production			Preferred pro	cess type								-	
ity consumption) consumpti	Descript		🕘 Unit pr	rocess									
kW (use) production mix at			System	process									
400 kW (use) production mix			Jystern	rprocess									
20 kW (use) production mix	▼ Geogr		Cut-off										
W (Use) production mix at n													
00 kW (Use), production mix.	Location												
) kW (Use), production mix, a													
< 20 kW (use), production m	KML											_	
120-400 kW (use), production	Descript									Finish	Cancel		at statistics
20-120 kW (use), production	beschip									THISH	Cancer	— ľ	in statistics
, production mix, at plant, tec													
kW (SEER 4.7) (Use), producti													
), production mix, at plant, BF	▼ Techno	ology											
), production mix, at plant, BF													
500m2), production mix, at p	Descript	tion The copper con	nsists in 100 ma	ass-% of Cu-DI	HP according	to DIN EN 117	2, i.e. oxygen	n-free phosp	horus de-ox	idised copper wi	th limited residu	ual pho:	sphorus (max. 0
copper (100 mm distance) (E		The degree of p	purity accordin	ng to DIN EN 19	976 #semi-fini	shed product#	≠ is at least 99	9.90 % coppe	er.				
copper (200 mm distance) (E													
pex (100 mm distance) (EN1:	- Data -	uslity											
pex (200 mm distance) (EN1:	▼ Data q	uality											
pp (100 mm distance) (EN15	Process	schema 🔠 II CD a	data quality or	stem									
pp (200 mm distance) (EN15	FIDCESS	achemia mileo e	dota quanty sy:	sterii									
oner < 12 kW (SEER 3,2), produ	Data qu	ality entry (Good; Ver	ry good; Good;	l; Good; Good;	Good; Good)								
> 12 kW (SEER 4,7), productio													
12 kW (SEER 3.5) production	How scl	nema											

Figure 4: wizard for creating a product system in openLCA 1.7.4

3 Feedback & Contact

If you have other questions not addressed by this document, or should you need further clarifications on any of the points commented, then please contact us:

7

Tel. +49 30 48 496 - 030

Fax +49 30 48 496 - 991

gd@greendelta.com

GreenDelta GmbH

Müllerstrasse 135

D-13357 Berlin, Germany

www.greendelta.com

Greendelta