Agribalyse 3.1.1 in openLCA

Software version:	openLCA 2.0.4
Report version:	1.0
Date	lanuary 16 202/

Author: Andreas Ciroth

GreenDelta GmbH, Kaiserdamm 13, 14057 Berlin, Germany; gd@greendelta.com

GreenDelta

Content

1	Agribalyse 3.11 for openLCA	3
2	Results comparison against SimaPro	4
3	Distribution of the database	. 6
4	Contact and Feedback	. 6

1 Agribalyse 3.1.1 for openLCA

Agribalyse is a French database with a focus on food products, developed and provided by ADEME, since quite some time. It is available from <u>https://doc.agribalyse.fr/documentation-en/agribalyse-data/data-access</u>.

Agribalyse is initially developed in SimaPro; earlier versions were available as a SimaPro csv file which could be imported into SimaPro and also openLCA, nowadays, with the 3.1.1 version, the SimaPro version is only available from PRé consultants, the developers of SimaPro, as an installation file in SimaPro, requiring a SimaPro license, and the download form from PRé requires users to state that they indeed possess a valid license of at least SimaPro 9.

For openLCA, ADEME shared a SimaPro csv version for the import.

Agribalyse contains datasets from ADEME projects about food, but also datasets from the Quantis World Food database, and from ecoinvent. This can be seen from the different product name patterns in the database, and it is also reflected in slightly different approaches for modelling water for example.

For the conversion to openLCA, the following steps were taken:

- Adding metadata that is lost in SimaPro (locations, especially, so that openLCA can show results on maps)
- Retrieving data quality from the SimaPro description, where it is in SimaPro stored for documentation but cannot be actively used; this is now possible in openLCA (although in the Agribalyse database, not many processes contain data quality information)
- Mapping flows to the openLCA flows from SimaPro, so that Agribalyse can be used together with the openLCA LCIA methods
- Flow and process names were stripped from the SimaPro metadata (locations, units some times) since this is not needed in openLCA
- Results were tested against SimaPro

Some aspects in Agribalyse were not addressed, these include:

- In the SimaPro version, some allocation factors are slightly off, i.e. not 1. This is wrong, but this is as it is in the original database. You see this when validating the database in openLCA.

dation results	
ta set	Message
Units of currency	🛕 duplicate unit name or synonym: \$
Units of area	🛕 duplicate unit name or synonym: a
Picodon cheese production, from goat's milk, soft cheese, French production mix, at plant, 1 kg of soft cheese {FR} U - FR	Illocation factors do not sum up to 1
Palm oil, refined, processed in EU, at plant - RER	allocation factors do not sum up to 1
Wheat flour, at industrial mill - Adapted from WFLDB - GLO	allocation factors do not sum up to 1
Saint-Marcellin cheese production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of Saint-Marcellin	allocation factors do not sum up to 1
Causses blue cheese production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of Causses blue chee	Illocation factors do not sum up to 1
Dairy fat 25% fat, light, spreadable, unsalted, at dairy - Adapted from WFLDB - RER	allocation factors do not sum up to 1
Feta cheese production, from ewe's milk, soft cheese, French production mix, at plant, 1 kg of soft cheese {FR} U - FR	allocation factors do not sum up to 1
Auvergne blue cheese production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of Auvergne soft c	allocation factors do not sum up to 1
Bresse blue cheese, reduced fat, around 15% fat production, from cow's milk, soft cheese, French production mix, at plan	allocation factors do not sum up to 1
Grinding and Forming, of frozen beef trimming, industrial production, French production mix, at plant, 1 kg of ground be	allocation factors do not sum up to 1
Uncured soft cheese, spreadable, around 30-40% fat, cheese production, from cow's milk, soft cheese, French production	allocation factors do not sum up to 1
Vacherin cheese or Mont d'or cheese production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of V	allocation factors do not sum up to 1
Soft-ripened cheese with bloomy rind, Camembert-type cheese production, from goat's milk, soft cheese, French produc	allocation factors do not sum up to 1
Pont l'Eveque cheese production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of Pont l'Eveque typ	allocation factors do not sum up to 1
Dairy fat 20% fat, light, spreadable, unsalted, unsalted, at dairy - Adapted from WFLDB - RER	allocation factors do not sum up to 1
Pyrenees cheese production, from ewe's milk, hard cheese, French production mix, at plant, 1 kg of hard cheese {FR} U - FR	allocation factors do not sum up to 1
Sainte Maure cheese production, from goat's milk, soft cheese, French production mix, at plant, 1 kg of soft cheese {FR} U	allocation factors do not sum up to 1
Cheese production, from goat's milk, hard cheese, French production mix, at plant, 1 kg of hard cheese {FR} U - FR	allocation factors do not sum up to 1
Uncured soft cheese, spreadable, around 25% fat, cheese production, from cow's milk, soft cheese, French production mi	allocation factors do not sum up to 1
Crottin cheese production, from goat's milk, soft cheese, French production mix, at plant, 1 kg of soft cheese {FR} U - FR	allocation factors do not sum up to 1
Cheese, fresh production, from goat's milk, soft cheese, French production mix, at plant, 1 kg of soft cheese {FR} U - FR	allocation factors do not sum up to 1
Soft-ripened round cheese with bloomy rind, around 5% fat, Camembert-type cheese, reduced fat, cheese production, fr	Illocation factors do not sum up to 1
Chaource cheese production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of Chaource soft cheese	Illocation factors do not sum up to 1
Butter, light, 39-41% fat, unsalted, at dairy - Adapted from WFLDB - RER	allocation factors do not sum up to 1
Cheese, semi-dry production, from goat's milk, hard cheese, French production mix, at plant, 1 kg of hard cheese {FR} U	allocation factors do not sum up to 1
Services ail stail mill Adapted from WELDP IIS	Allocation factors do not sum un to 1

Allocation: Bresse blue cheese, reduced fat, around 15% fat production, from cow's milk, soft cheese, French production mix, at plant, 1 kg of Bresse blue soft cheese FR																		
Default method Physical Calculate factors																		
Physical & economic allocation																		
Product			Physical															
Bresse blue cheese, reduced fat, around 15% fa	t production, from co		0.606					0.606										
Bresse blue cheese, reduced fat, around 15% fa			0.00131					0.00131										
Bresse blue cheese, reduced fat, around 15% fa								0.0326										
Bresse blue cheese, reduced fat, around 15% fa	t production, from co		0.34600000000000003				0.34600	00000000003										
Bresse blue cheese, reduced fat, around 15% fa	t production, from co		0.01419999999999999999				0.01419	9999999999999999										
Σ																		
Course allocation																		
Causal allocation																		
Causal allocation	Direction	Category		oft cheese, Fi	's milk, soft c	milk, soft ch	r's milk, soft (, soft cheese,										
		Category Others/Copied from	Amount 8.81000 kg	oft cheese, Fi 0.606	's milk, soft c 0.00131	milk, soft ch 0.0326		. soft cheese, 0.01419999										
	Input							0.01419999										
Flow ② Tap water {GLO}] market group for Cut-off,	Input Input	Others/Copied from	8.81000 kg	0.606	0.00131	0.0326	0.34600000 0.34600000	0.01419999										
Flow ③ Tap water {GLO} market group for Cut-off, ⑤ Calcium chloride {RER}] soda production, so	Input Input	Others/Copied from Others/Copied from	8.81000 kg 0.00083 kg	0.606	0.00131 0.00131	0.0326	0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999										
Flow Tap water (GLO) market group for Cut-off, Calcium chloride (RER) soda production, so Heat, district or industrial, other than natura	Input Input Input	Others/Copied from Others/Copied from Others/Copied from	8.81000 kg 0.00083 kg 1.30000 MJ	0.606 0.606 0.606	0.00131 0.00131 0.00131	0.0326 0.0326 0.0326	0.34600000 0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999										
Flow (a) Tap water (GLO)] market group for Cut-off, (c) Calcium chloride (RER)] soda production, so (c) Ethane, 1,1,2,2-tetrafluoro-, HFC-134	Input Input Input Output	Others/Copied from Others/Copied from Others/Copied from Emission to air/high	8.81000 kg 0.00083 kg 1.30000 MJ 5.13000E-6 kg	0.606 0.606 0.606 0.606	0.00131 0.00131 0.00131 0.00131	0.0326 0.0326 0.0326 0.0326 0.0326	0.34600000 0.34600000 0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999 0.01419999										
Flow Tap water (GLO)] market group for Cut-off, Calcium chloride (RER) soda production, so Heat, district or industrial, other than natura Ethane, 1,1,2,2-tetrafluoro., HFC-134 Diainfectant, at plant (RER) U - RR	Input Input Input Output Input	Others/Copied from Others/Copied from Others/Copied from Emission to air/high Chemicals/Others	8.81000 kg 0.00083 kg 1.30000 MJ 5.13000E-6 kg 0.00040 kg	0.606 0.606 0.606 0.606 0.606	0.00131 0.00131 0.00131 0.00131 0.00131 0.00131	0.0326 0.0326 0.0326 0.0326 0.0326 0.0326	0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999 0.01419999 0.01419999										
Flow (a) Tap water (GLO) market group for Cut-off, (b) Calcium chloride (RER) soda production, so (c) Heat, district or industrial, other than natura (c) Ethane, 1,1,2,2-tetrafluoro-, HFC-134 (c) Disinfectant, at plant (RER) U - RER (c) Veast, at plant - RER	Input Input Output Input Input Output Output	Others/Copied from Others/Copied from Others/Copied from Emission to air/high Chemicals/Others material/Others	8.81000 kg 0.00083 kg 1.30000 MJ 5.13000E-6 kg 0.00040 kg 8.59000E-5 kg	0.606 0.606 0.606 0.606 0.606 0.606	0.00131 0.00131 0.00131 0.00131 0.00131 0.00131 0.00131	0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326	0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999										
Flow To water (GLO)] market group for J Cut-off, Calcium chloride (RER) soda production, so Heat, district or industrial, other than natura Ethane, 1,1,2,2-tetrafluoro-, HFC-134 Disinfectant, at plant (RER) U - RER Vesst, at plant - RER Municipal solid waste treatment of, inciner	Input Input Output Input Input Output Output	Others/Copied from Others/Copied from Others/Copied from Emission to air/high Chemicals/Others material/Others Others/Copied from	8.81000 kg 0.00083 kg 1.30000 MJ 5.13000E-6 kg 0.00040 kg 8.59000E-5 kg 0.00938 kg	0.606 0.606 0.606 0.606 0.606 0.606 0.606 0.606	0.00131 0.00131 0.00131 0.00131 0.00131 0.00131 0.00131	0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326	0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999										
Flow Tap water (GLO)] market group for Cut-off, Calcium chloride (RER) soda production, so Heat, district or industrial, other than natura Ethane, 1,1,2,2-tetrafluoro, HFC-134 Diainfectant, at plant (RER) U- RER Yeast, at plant - RER Municipal solid waste treatment of, inciner	Input Input Output Input Input Input Output Input	Others/Copied from Others/Copied from Others/Copied from Emission to air/high Chemicals/Others material/Others Others/Copied from Others/Copied from	8.81000 kg 0.00083 kg 1.30000 MJ 5.13000E-6 kg 0.00040 kg 8.59000E-5 kg 0.00938 kg 5.12000E-6 m2	0.606 0.606 0.606 0.606 0.606 0.606 0.606 0.606 0.606	0.00131 0.00131 0.00131 0.00131 0.00131 0.00131 0.00131 0.00131	0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326	0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000 0.34600000	0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999 0.01419999										

- The product names were only slightly aligned, but it was not aim to provide a full coherent nomenclature

2 Results comparison against SimaPro

Always when migrating a database from one reference system like SimaPro to another one, it remains a task and challenge to fully reflect the same results.

This was nicely achieved; however, some comments are useful since results are not entirely identical, for example when using the adapted (i.e., mapped to each respective reference

system) Environmental Footprint method 3.1, in both tools (as integrated in openLCA method package 2.4 and in SimaPro in version 1.00).

For example, comparing the product system for 'Broiler, broiler feed, conv prod, at farm gate' in France, process UUID 148b2164-c54e-31df-aa8o-3964fdd1006a, with the respective SimaPro calculation results for 'Broiler, broiler feed, conv prod, at farm gate {FR} U', yields these results:

		openLCA			Broiler, broiler feed, conv prod, at farm gate {FR} U		SP
Broiler, broiler feed, conv prod, at farm gate	1t				1kg		
Name	Category	Impact as	Unit		Impact category	Unit	Total
Acidification	EF 3.1 Met	8.525713	mol H+ eq	1.018793	Acidification	mol H+ ed	0.008368446
Climate change	EF 3.1 Met	1023.364	kg CO2 eq	0.983937	Climate change	kg CO2 ec	1.040070417
Climate change (biogenic)	EF 3.1 Me	0.557477	kg CO2 eq	1	Climate change - Biogenic	kg CO2 ec	0.000557477
Climate change (fossil)	EF 3.1 Met	494.8263	kg CO2 eq	0.96579	Climate change - Fossil	kg CO2 ec	0.512353818
Climate change (land use)	EF 3.1 Met	514.1112	kg CO2 eq	0.975249	Climate change - Land use and LU change	kg CO2 ec	0.527159122
Ecotoxicity freshwater	EF 3.1 Met	41668.43	CTUe		Ecotoxicity, freshwater - inorganics	CTUe	4.277284444
Ecotoxicity freshwater (inorganics)	EF 3.1 Me	3834.234	CTUe		Ecotoxicity, freshwater - organics - p.1	CTUe	21.03437797
Ecotoxicity freshwater (organics)	EF 3.1 Met	37834.19	CTUe		Ecotoxicity, freshwater - organics - p.2	CTUe	6.815274955
					Ecotoxicity, freshwater - part 1	CTUe	22.80395044
				0	Ecotoxicity, freshwater - part 2	CTUe	9.322986924
Eutrophication freshwater	EF 3.1 Me	0.297426	kg P eq	0.998796	Eutrophication, freshwater	kg P eq	0.000297785
Eutrophication marine	EF 3.1 Met	5.918254	kg N eq	0.998519	Eutrophication, marine	kg N eq	0.005927029
Eutrophication terrestrial	EF 3.1 Met	34.42329	mol N eq	1.005769	Eutrophication, terrestrial	mol N eq	0.034225849
Human toxicity cancer	EF 3.1 Met	6.36E-07	CTUh	0.537528	Human toxicity, cancer	CTUh	1.18E-09
Human toxicity cancer (inorganics)	EF 3.1 Me	5.11E-08	CTUh	0.086152	Human toxicity, cancer - inorganics	CTUh	5.93E-10
Human toxicity cancer (organics)	EF 3.1 Met	5.85E-07	CTUh	0.991259	Human toxicity, cancer - organics	CTUh	5.90E-10
Human toxicity non-cancer	EF 3.1 Met	1.25E-05	CTUh	0.649527	Human toxicity, non-cancer	CTUh	1.93E-08
Human toxicity non-cancer (inorganics)	EF 3.1 Me	7.90E-06	CTUh	0.5289	Human toxicity, non-cancer - inorganics	CTUh	1.49E-08
Human toxicity non-cancer (organics)	EF 3.1 Met	4.62E-06	CTUh	1.064176	Human toxicity, non-cancer - organics	CTUh	4.34E-09
Ionising radiation (human health)	EF 3.1 Met	61.52744	kBq U235 (0.998945	Ionising radiation	kBq U-235	0.061592416
Land use	EF 3.1 Met	80111.8	dimensior	1.134115	Land use	Pt	70.63818607
Ozone depletion	EF 3.1 Met	4.64E-05	kg CFC11 e	0.99981	Ozone depletion	kg CFC11	4.64E-08
Particulate matter	EF 3.1 Me	5.89E-05	disease in	0.993085	Particulate matter	disease ir	5.93E-08
Photochemical ozone formation (human hea	EF 3.1 Met	2.958235	kg NMVO(0.996083	Photochemical ozone formation	kg NMVO	0.002969869
Resource use fossils	EF 3.1 Me	4998.844	MJ (net ca	1.015974	Resource use, fossils	MJ	4.920247026
Resource use minerals and metals	EF 3.1 Met	0.003864	kg Sb eq	1.020814	Resource use, minerals and metals	kg Sb eq	3.79E-06
Water use	EF 3.1 Me	1493.912	m3 world	1.051328	Water use	m3 depriv	1.420976029

- Methane to air, without specification whether fossil or biogenic, is not considered as fossil in openLCA, but in SimaPro -> higher impacts in fossil climate change in SimaPro
- Human toxicity cancer, especially inorganics: In SimaPro, "chromium, ion" is assumed to be Chromium VI which is a very strong assumption, as the common and not cancerous form would be Chromium III -> this is different in openLCA, leading to much higher results in SimaPro, for several inorganic toxicity categories

Compartment Indicator All compartments Characterisation 7 Per sub-compartment Category 7 Skip unused Human toxicity cancer		C <u>u</u> t-off 0% ↓	 <u>s</u>tandard 		t <u>u</u> nits e long-term emissi pact category		ıl () ≓		
• 3 <u>K</u> i	punuseu	Human toxicity, cancer	•	e <u>o</u> roup	Fer I <u>III</u>	pact category			
No	Substance					Compartment	Subcompartment	Unit	Total 🗸
	Total of all compartm	ents						CTUh	1.18E-9
1	Furan					Air	low. pop.	CTUh	4.1E-10
2	Chromium, ion					Water	river	CTUh	2.85E-10
3	Formaldehyde					Air	low. pop.	CTUh	1.09E-10
4	Chromium, ion					Water	groundwater	CTUh	8.4E-11
5	Chromium, ion					Soil	agricultural	CTUh	5.57E-11
6	Chromium (VI)					Water	river	CTUh	5E-11
7	D /- \					A LL	terre and	CTUR	0 00E 11

- In Land use, transformation to arable land, unspecified use is not considered in SimaPro, but in openLCA (since the EF method provides factors for land transformation "to arable"). This leads to slightly higher results for openLCA. - Water from rain is not considered in the SimaPro method but in openLCA, leading to slightly higher results for openLCA.

3 Distribution of the database

While earlier versions of the database were entirely free e.g. for educational uses in France, this is now not possible any more, a problem seem the integrated ecoinvent datasets, as we learned from ADEME. We regret this (and see of course no relation to the announced "partnership" between ecoinvent and ADEME / Agribalyse) but of course follow.

Since openLCA is able to calculate also incomplete supply chains, different from SimaPro, we are planning to make a "pure" Agribalyse without ecoinvent, and release this again for free, but this needs to be agreed with ADEME of course.

The current database is thus available for Nexus, as an update of the already existing Agribalyse 3.1. For download, an ecoinvent license is required.

4 Contact and Feedback

Feedback is welcome!

nexus@greendelta.com

GreenDelta GmbH, Kaiserdamm 13, 14057 Berlin,