免费软件 OPENLCA 入门教材

ATL 公司陈朝阳翻译（www.ATLbattery.com）

Getting Started
What's new in openLCA 2.0
Collaboration tool for openLCA
Community forum
Comprehensive databases
Case studies
Certified trainings
Working with the developers of openLCA

openLCA is a powerful, open source, feature-rich software for LCA and Sustainability modelling.
Create, import existing databases which contain life cycle processes, import assessment methods, create your own processes, build your own life cycle models, calculate and analyse it. These steps are explained on YouTube, and in the openLCA handbook.

2023-12-6
绿色电池评价分析中国工业和信息化部重点实验室
中国北京
第 8 章 工序 Process...45
 工序 Process...45
 单位过程和系统过程的图标区别 Unit process and system process icons45
 8.1 创建一个新的工序 creating a new process...46
 8.2 工序选项卡的内容 Process tab content...48

第 9 章 产品系统 Product systems...54
 产品系统的定义 Product systems..54
 9.1 创建一个新的产品系统 Creating a new product system54
 9.2 “产品系统”选项卡内容 “产品系统”选项卡内容......................................57
 9.3 模型图 Model graph..59
 9.4 先进的产品系统功能 Advanced product systems features63
 9.5 计算产品系统 Calculating product system..65

第 10 章 生命周期影响分析模式和种类...66
 生命周期影响分析方法定义 LCIA methods..66
 10.1 导入 LCIA 方法到 OpenLCA 软件 Importing LCIA method67
 从 Nexus 在线数据库下载 LCIA 方法 Download LCIA methods from Nexus online database ..67
 将 LCIA 方法导入软件 Importing LCIA method ..68
 10.2 创建新的影响评估方法/类别 Creating new impact assessment methods and categories..69
 创建新的影响评估类别 Creating new impact assessment categories70
 10.3 “方法”选项卡 Methods tabs...71
 影响评估方法选项卡内容 Impact assessment methods tab contents71
 10.4 种类选项 Category tabs..72

第 11 章 计算和结果分析 Calculation and result analysis................................76
 11.1 惰性求值对渴求求值计算 Lazy vs Eager calculation....................................77
 11.2 结果分析 Result analysis..78
 11.3 存储和导出结果 Save and export results..86

12 项目 Project...90
 项目定义 Project define...90
 12.1 建立一个新项目 Creating a new project...90
 12.2 报告模板 Report template...93
 12.3 项目结果 Project results..95
 12.4 项目报告 Project report...96

第 13 章 废物处理模型 Waste modelling..99
 废物处理模型定义 waste modellings..99
 物料流逻辑 Material flow logic..100
 反向进退 Opposite direction approach...100

第 14 章 分配 Allocation..101
 分配的定义 Allocation..101
 分区 Partitioning..101
 系统扩展 System Expansion...104

第 15 章 参数 Parameters..105
 参数的定义 Parameters...105
准备知识

可用的 LCA 数据库和下载地址

1. 天工 LCA 数据库。2023 年 11 月由清华大学徐明教授团队推出的，提供符合 ILCD 格式的数据压缩包（Zip 压缩格式）。目前有 4000 多个单元过程和清单，50 多个领域，200 多个产品，150 多个贡献者。联系邮件：contact@tiangong.earth。数据下载地址：TianGong - Life Cycle Assessment (LCA) - Data。

2. 中国电子标准化研究院为工信部开发的锂离子电池材料低碳的朔源平台。网址：www.ldchy.cn。

4. 中国碳核算数据库（China Emission Accounts and Datasets, CEADs）简介：CEADs 是在国家自然科学基金委员会、科技部国际合作项目及重点研发计划、英国研究理事会等共同支持下，聚集近千名中外学者以数据众筹方式收集、校验，共同编纂完成的一个涵盖中国及其他发展中经济体的多尺度碳核算清单及社会经济与贸易数据库，并为学术研究提供免费的数据共享下载。数据下载地址：https://www.ceads.net.cn/data/。

5. 中国多尺度排放清单模型（Multi-resolution Emission Inventory for China，MEIC）简介：中国多尺度排放清单模型是一套由清华大学开发的基于云计算平台开发的中国大气污染物和温室气体人为源排放清单模型，通过建立源分类分级体系和排放因子数据库，研发基于技术和动态过程的排放清单技术，开发多尺度高分辨率排放源模式，在此基础上基于云计算平台技术进行集成，建立中国多尺度排放清单模型（MEIC），为科学研究、政策评估和空气质量管理等工作提供规范、准确、更新及时的高分辨率动态排放清单数据产品。数据下载地址：http://meicmodel.org/。

6. 中国生命周期基础数据库 Chinese Life Cycle Database，即 CLCD。最初由四川大学创建，之后由亿科环境持续开发，是一个基于中国基础工业系统生命周期核心模型的行业平均数据库，目标是代表中国生产技术和市场平均水平。2009 年，CLCD 研究被联合国环境规划署（UNEP）和 SETAC 学会授予生命周期研究奖。CLCD 数据库成为国内唯一入选 WRI/WBSCD GHG Protocol 的第三方数据库，也是首批受邀加入欧盟数据库网络（ILCD）的数据库，是国内外 LCA 研究者广泛使用的中国本地生命周期基础数据库。

7. 《中国产品全生命周期温室气体排放系数库》（2022 年 1 月份新建立的）。生态环境部环境规划院碳达峰碳中和研究中心联合北京师范大学生态环境治理
研究中心、中山大学环境科学与工程学院，在中国城市温室气体工作组（CCG）统筹下，组织24家研究机构的54名专业研究人员，建设中国产品全生命周期温室气体排放系数集（2022）并且全部公开。

8. 全球实时碳数据（Carbon Monitor）简介：全球实时碳数据库涵盖全球电力、工业、地面运输、航空运输、居民消费等部门排放的高分辨率活动数据，覆盖了以日为分辨率的全球二氧化碳排放量，是目前唯一能够提供日分辨率全球碳排放空间展示的数据平台，可为科学研究和政策评估提供基础数据支持，并大幅度缩短低碳政策的响应时间。实时全景碳地图在基于全球实时碳排放数据库的基础上进一步实现了全球最高时空分辨率的碳排放可视化呈现。实时全景碳地图覆盖了中国所有地区。数据下载地址：http://www.carbonmonitor.org.cn

11. 荷兰环境评估机构（Netherlands Environmental Assessment Agency，PBL）的全球大气研究排放数据库（Emissions Database for Global Atmospheric Research，EDGAR）简介：全球大气研究排放数据库根据公开可得的统计数据，为科研工作者和决策者提供全球人为排放和排放趋势的独立估计数。这份科学的独立排放清单的特点是，从1970年到x-3年世界历史趋势一致，包括所有温室气体、空气污染物和气溶胶的排放。数据库提供了所有国家/地区的数据，按主要排放源类别提供排放量，并在所有全球范围内0.1 x 0.1网格上进行空间分配。具体来看，EDGAR包括分国家碳排放总量、分部门排放量、单位GDP排放量及人均排放量。在其2020报告中，列出了1990-2020年期间的化石二氧化碳排放以及人均和GDP趋势。数据下载地址：https://data.jrc.ec.europa.eu/c

12. 全球碳预算数据库（Global Carbon Budget，GCB）简介：全球碳预算数据库详细描述了数据库的所有数据集和模型结果，将对全球碳预算做出贡献的所有数据集集成在两个Excel文件中，一个为全球碳预算，一个为国家层面排放清单。全球碳预的科学目标是全面了解全球碳循环，包括其特征及之间的相互作用。综合各类对全球碳循环的理解，并向研究机构、政府和公众提供快速反馈。为区域/国家碳计划提供全球协调平台，通过更好的协调、明确目标和发展概念框架，加强国家和地区间更广泛的碳研究计划及其他更多相
13. 世界资源研究所气候观察（World Resources Institute，WRI）简介：世界资源研究所成立于 1982 年，致力于提供客观分析、参与政策决策，并在充分考虑经济发展、自然资源与环境的前提下应对全球的紧迫挑战。自成立以来，WRI 基于科学分析，与政府、企业、城市决策者和社区紧密开展长期合作。数据下载地址：https://wri.org.cn/data

14. 美国能源信息管理局（U.S. Energy Information Administration, EIA）简介：美国能源信息管理局成立于 1977 年，是能源部的能源信息数据统计和分析机构，也为美国政府能源决策提供支持服务。EIA 进行全面的数据收集，基本涵盖能源领域全部范围，同时进行信息丰富的能源分析，包括能源市场趋势的每月短期预测以及美国和国际能源的长期前景等。数据下载地址：https://www.eia.gov/international/d

16. 美国橡树岭国家实验室二氧化碳信息分析中心（Carbon Dioxide Information Analysis Centre, CDIAC）简介：相对许多传统的基础学科（例如，气象学或海洋学）数据中心，二氧化碳信息分析中心的范围包括对用户有价值的与温室效应和全球气候变化有关的潜在的任何事物，包括二氧化碳在内的大气中散发的活动气体；陆地生物圈和海洋在温室气体的生物地球化学循环的作用；二氧化碳对大气的散发；长期的气候趋势；作用于植物高浓度二氧化碳的影响；和沿海地区上升的海平面的脆弱性。CDIAC 数据档案库于 2017 年 9 月结束运营，过去 30 多年运作收集的数据正在过渡到新的档案库。数据下载地址：https://cdiac.ess-dive.lbl.gov

17. 欧盟委员会联合研究中心（European commission's Joint Research Centre，JRC）简介：欧盟委员会联合研究中心是欧盟的科学和知识服务机构，其使命是在欧盟制定政策的过程中提供独立的政策支持。ELCD 数据库由欧盟研究中心（JRC）联合欧洲各行业协会提供，是欧盟政府资助的公数据库系统。ELCD（欧洲参考生命周期数据库）包含来自欧盟级商业协会和其他关键材料、能源载体、运输和废物管理来源的生命周期清单（LCI）数据。相应的数据集由指定的行业协会正式提供和批准。ELCD 中涵盖了欧盟 300 多种大宗能源、原材料、运输的汇总 LCI 数据集（ELCD 3.2 版），包含各种常见 LCA 清单物质数据，可为在欧生产，使用、废弃的产品的 LCA 研究与分析提供数据支持，是欧盟环境总署和成员国政府机构指定的基础数据库之一。数据下载地址：https://data.europa.eu/en

18. 联合国气候变化框架公约（United Nations Framework Convention on Climate Change, UNFCCC）数据库简介：《公约》在 1992 年 6 月 3 日举行的联合国环境与发展会议上签署，1994 年 3 月 21 日正式生效。《联合国气候变化框架公约》由序言及 26 条正文组成，是世界上第一部为全面控制温室气体排放、应对气候变化的具有法律约束力的国际公约，也是国际社会在应对全球气候变化
变化问题上进行国家合作的基本框架。目前，已有 197 个国家批准了《联合国气候变化框架公约》，这些国家被称为《联合国气候变化框架公约》缔约方。

公约规定每年举行一次缔约方大会。缔约方大会是《联合国气候变化框架公约》的最高级别的会议。数据下载地址：https://unfccc.int/annualreport

19. 气候观察（Climate Watch）简介：气候观察是一个在线平台，旨在为政策制定者、研究人员、媒体和其他利益相关者提供他们所需的公开气候数据、可视化和资源，以收集关于国家和全球气候变化进展的见解。这个免费平台能够创建和分享定制的数据可视化，并对国家气候承诺进行比较。它通过使用开放数据来提高透明度和问责制，为《巴黎协定》的目标做出贡献，并就各国如何加强应对气候变化的努力提供可操作的分析。数据下载地址：https://www.climatewatchdata.org/da

20. Ecoinvent 数据库是由瑞士 Ecoinvent 中心开发的商业数据库，数据主要源于统计资料以及技术文献。Ecoinvent 数据库是一个生命周期清单（LCI）数据库，支持各种类型的可持续性评估。它包含各种常见物质的 LCA 清单数据，是国际 LCA 领域使用最广泛的数据库之一也是许多机构指定的基础数据库之一。2021 年发布了最新版本 Ecoinvent 3.8，包含欧洲及世界多国的 18000 多个单元过程数据集以及相应产品的汇总过程数据集，其中包括农业和畜牧业、建筑和建筑、化工和塑料、能源、林业和木材、金属、纺织、运输、旅游住宿、废物处理和回收以及供水等工业部门（3.8 版）。Ecoinvent 数据库能够提供丰富，权威的国际数据支持，适用于含进口原材料的产品或出口产品的 LCA 研究，也可用于弥补国内 LCA 数据的暂时性缺失。

21. GaBi 数据库是由德国的 Thinkstep 公司开发的 LCI 数据库，提供近 17,000 个流程和计划模型，很大程度上基于 GaBi 与公司、协会和公共机构在全球合作期间收集的原始数据。这些数据集是从包含更多单元过程数据集的基础数据库开发的。17,000 个数据集中约 3,500 个数据集可用作“仅按需数据”内容。GaBi 数据库拥有迄今为止全球最大的 LCI 数据行业覆盖范围。GaBi 数据库涵盖大多数行业，包括农业、建筑与施工、化学品和材料、消费品、教育、电子与信息通信技术、能源与公共事业、食品与饮料、医疗保健和生命科学、工业产品、金属和采矿、塑料、零售、服务业、纺织品等。

22. U.S. LCI（The U.S. Life Cycle Inventory）由美国国家再生能源实验室（NREL）和其合作伙伴开发，代表美国本土技术水平，涵盖常用的材料生产、能源生产、运输等过程。

23. Korea LCI database 由开发，涵盖物质及配件的制造、加工、运输、废物处置等过程。

24. EF 数据库由欧盟开发，主要应用于 PEFCRs 和 OEFSRs 的代表产品的 LCA 计算。

在免费 OpenLCA 软件中导入免费天工 LCA 数据库

1. 打开 OpenLCA 软件，点击左上角“Database”选项卡，点击“New Database”。
2. 输入新建数据库名称，选择“Complete reference data”，点击“Finish”初始化数据库。
3. 完成初始化的数据库如下图。
4. 点击左上角“File”选项卡，选择“Import-File”。
5. 选中从官方渠道下载的“天工数据库”压缩包（ZIP 格式），点击“打开”。
6. Flow mapping 选择“ILCD_Import.csv”，点击“Finish”。
7. 等待数据导入。
8. 可能显示有 1 处错误，可能是 OpenLCA 数据转换时对 ILCD 包解读有误，不影响使用。点击“OK”完成数据导入。
9. 导入完成。

OpenLCA 教程下载地址

用百度在线翻译的为中文版本， 陈朝阳校正

- 英文手册的网址 openLCA 2 manual
- 点击链接 可以出现菜单式手册 https://manuals.openlca.org/openlca/
- 采用百度在线翻译的内容 （OpenLCA 第 2 版手册）
8. 流程
 8.1. 创建新进程
 8.2. 进程选项卡
9. 产品系统
 9.1. 创建新的产品系统
 9.2. 产品系统选项卡
 9.3. 模型图
 9.4. 高级产品系统特性
 9.5. 计算产品系统
10. LCIA的方法和类别
 10.1. 将 LCIA 方法和类别导入 openLCA
 10.2. 创建新的影响评估方法和类别
 10.3. 方法选项卡
 10.4. 类别选项卡
11. 计算和结果分析
 11.1. Lazy vs Eager 计算
 11.2. 结果分析
 11.3. 保存和导出结果
12. 项目
 12.1. 创建一个新项目
 12.2. 报告模板
 12.3. 项目结果
 12.4. 项目报告
13. 废物建模
14. 分配
15. 参数
 15.1. 参数类型
 15.2. 参数层次结构
 15.3. 参数集
16. 背景数据

先进的知识库
17. 高级主题
 17.1. 区域化 LCA
 17.2. 蒙特卡罗模拟
 17.3. 生命周期成本核算
 17.4. 数据质量
 17.5. 社会方面
18. 环保产品声明 (EPD)
 18.1. 为目标产品创建新流程
 18.2. 从您的流程创建产品系统
 18.3. 计算产品系统
 18.4. 保存结果
 18.5. 在 openLCA 中创建 EPD
 18.6. 添加来自各种来源的 EPD 结果
 18.7. 从 EC3 获取 EPD
 18.8. 在生命周期模型中使用 EPD 的结果
19. 团队协作
20. openLCA备忘单
 20.1. 用法
 20.2. 流程中的直接影响计算
 20.3. openLCA 和 Excel
 20.4. 标签
第1章介绍openLCA软件

软件工作步骤为：

- **数据**(data) → **模型**(model) → **结果**(Result) → **决定**(decision)

每个可持续性的生命周期评估决策都基于从模型中获得的结果，而模型又使用数据。软件负责获取数据，将其提供给模型，并从模型中生成结果。

软件对以下方面有影响：

- 可以构建哪些模型;
- 如何构建模型;
- 可以应用哪些方法（用于计算、影响评估、数据质量评估、不确定性评估、解释……）;
- 哪些结果很容易获得，哪些不那么容易获得；和
- 结果的呈现方式

OpenLCA是一流的LCA软件，是开源的，全球范围内使用最广泛。

格式转换功能最初是一个单独的工具，现已集成到openLCA的导入和导出中。openLCA现在支持多种导入和导出格式。对于LCA建模，openLCA提供了复杂LCA模型所需的所有功能，无论大小。整个生命周期的经济和社会评估也是可能的，使openLCA成为生命周期可持续性评估软件。

具有大量文档的API允许与其他IT系统连接和集成。openLCA支持应用程序内脚本（如SQL或Python），用于自动化建模和数据例程。
OpenLCA 不仅是桌面应用程序，还有 LCA 协作服务器，它支持团队协作，使用 openLCA，以及服务器版本，允许在云系统中部署。

OpenLCA 的用途

OpenLCA 是一种用于建模和评估生命周期、执行生命周期评估或 LCA 的工具。这包括从狭义上对生命周期进行建模，通过直观或通过表格连接过程，评估它们对环境、经济或社会的影响，并分析这些结果以确定热点。此外，还可以对产品进行比较，也可以对组织进行评估和比较。

OpenLCA 中，生命周期模型的许多不同的“变体”是可能的，例如：

- 根据温室气体核算体系或 ISO 14067 的产品碳足迹
- 根据 ISO 14040 的 LCA 生命周期分析研究
- LCA 研究符合欧盟委员会的环境足迹方法
- LCA 研究，用于创建环境产品声明（EPD），也符合 EN15804
- 筛选研究
- 组织 LCA 研究
- 生命周期成本核算研究
- 社会 LCA 研究

与 openLCA 的这一核心用途相关联，您还可以导入和导出数据、创建和修改生命周期影响评估（LCIA）方法、在团队内进行协作等等。

开发公司人员 GreenDelta GmbH -

GreenDelta 是 openLCA 的开发者。除了开发 openLCA，GreenDelta 还参与可持续发展研究、咨询服务、案例研究、数据库开发和各种其他工具的开发。

欢迎访问我们的 www.greendelta.com！

GreenDelta

（德国公司）
第 2 章 如何运行 openLCA

如何运行 openLCA

在官网上下载安装软件。
获取 openLCA 的最快方法是下载 (zip/dmg/tar.gz) 存档或安装程序 (Windows)。
openLCA 的安装过程略有不同，具体取决于您使用的是 Windows、Mac 还是 Linux。

下载数据库 Download fast libraries

For openLCA 2.0.3 and later releases 对 2.0.3 版本或更新版本的下载数据库

自 openLCA 2.0.3 以来，我们很高兴地宣布用户体验有了显著改善。通过合并“英特尔数学内核库” (MKL)，我们不再需要下载用于加速计算的补充 UMFPACK 库。MKL 是一个优化和高效的数学和科学计算库。

请注意，带有以前数学库的 openLCA 2.0.3 仍然可以从 openLCA.org 下载。

第 3 章 资源

资源 Resources

通过访问我们的 openLCA 博客，随时了解最新进展，我们在博客中分享关于新版本、错误修复和其他相关主题的见解。
还可以浏览我们的 LinkedIn 页面、LinkedIn 群组、YouTube 帐户和 Twitter 帐户，
在那里您可以找到更新和各种教程。
在本手册的这一部分中，您可以找到有关以下方面的更多信息：

- openLCA.org 软件网页
- openLCA Nexus 在线数据库
- ask.LCA 问答平台
软件网页 openLCA.org

网站为新的和现有的 openLCA 用户提供一系列服务。您可以找到软件的下载链接、源代码、openLCA-LCIA 方法包、案例研究、用户手册以及教学视频的链接。请查看我们的学习与支持部分。

在线数据库 openLCA Nexus

openLCA 是一个免费的开源软件。然而，许多 LCA 数据库并不是免费的。GreenDelta 创建了 openLCA Nexus，这是一个向用户提供 LCA 数据的在线存储库。它包含免费和“供购买”的数据。一些如下图所示。此外，Nexus 网站允许您在 Nexus 中搜索数据集。还可以按数据提供商、位置、类别、价格和有效期对数据集进行筛选。

可用的数据库 Databases（大约 300,000 个数据集）

软件 openLCA 提供了全球最大的数据集和数据库集合，有些是免费购买的。在线数据库 Nexus 上总共有大约 300,000 个不同的数据集。（原文 openLCA offers the largest collection of data sets and databases worldwide for LCA software, some for purchase, some for free. Altogether, around 300,000 different data sets are available on Nexus.）
从在线数据库 openLCA Nexus 中获得数据。

On Nexus, you can use the search engine and the "Map" feature to explore the content of the available databases. 在 Nexus 上，您可以使用搜索引擎和“地图”功能来探索可用数据库的内容。

要从 openLCA Nexus 网站订购和下载数据库，请遵循以下步骤：
1) **在 Nexus 注册账户并登录**：我们致力于严格的数据保护原则，以确保您的隐私安全。
2) **选择所需的许可证并将其添加到购物车中**：导航“数据库”部分，浏览可用的许可证，然后选择符合您的要求或偏好的许可证。请注意，有些数据库可能是免费的，而其他数据库则需要付费。
3) **下单**：将许可证添加到购物车后，继续下单。有关数据库许可证的更多信息，您可以查看 openLCA Nexus 网站的常见问题解答。
4) **批准和数据库下载**：在您的订单获得批准后，转到 Nexus 网站上的“下载”部分。当您登录时，此部分位于页面的右上角。在这里，您可以找到可供下载的数据文件列表。
5) **选择文件和格式**：从可用选项中选择要下载的文件，然后选择您喜欢的格式（如果适用）。
6) **审查和接受许可证**：在下载文件之前，请仔细阅读许可证和最终用户许可协议（EULA），并选中底部的两个框。
7) **下载**：点击“下载”按钮开始下载过程。
问题交流社区网页 ask.openlCA

ask.openlCA 是一个公共支持平台，作为用户提问和获得答案的中心，为获取援助和信息提供便利。

第 4 章 LCA 的案例介绍特征

举例说明软件操作 LCA case study

在本节中，我们通过演示一种典型的生命周期评价建模方法，概述了 openLCA 的关键功能。这些关键要素包括选择背景数据库、创建流程和产品、将它们连接到生命周期、选择影响评估方法、执行生命周期计算以及审查结果。本手册的后续章节将提供使用软件的详细说明。
Using openLCA for LCA modeling, the first step is to choose a background database (background database). In the software environment, "database" serves as a repository for the components needed to execute LCA. Therefore, you need to create or import a database to use openLCA. Furthermore, starting from scratch to model the entire life cycle is uncommon. Instead, you will obtain general processes (these "universal processes" usually include electricity production, transport, construction, waste treatment processes) from existing databases. Typically, you will model a specific core process for the product being analyzed.

This case study will use the Agribalyse database (available for free) on the online database Nexus to model the core processes of producing a package of oat milk against a package of milk. Typically, you can activate a project in openLCA and model the production phase of an oat milk pack, with its input and output flows.

Chen Chaoyang explains the key terms:

- **Project** = (multiple products comparison) project
- **Product System** = (can be calculated for life cycle impact analysis) product system
- **Process** = (in the flow Flow dependent) process
- **Flow** = (construct the most basic substance, energy, transport factors) flow.
- **EPD** = Environmental Product Declaration
- **Result** = Result

![Database Menu](image)

Creating a process

Now, we can design the production phase (Life cycle phase) or process (process). In this example, we will use the process (process) as an example of a process (process) that converts the input (input) of the product (product) into the output (output) of the process (process). Its characteristic is that it is a quantifiable process, and the product (product) process produces waste (waste treatment processes), which is its waste. In this case study, we will jump over the raw material extraction stage (raw material extraction phase) and directly model the production stage of the process (process).

Below, you can see the process that models the production phase of an oat milk pack, with its input and output flows.
Creating a product system

We will integrate the processes we just created into a life cycle model by creating a product system.
图 6 燕麦奶包的生命周期模型和相关全部的工序
燕麦奶包（oat milk pack）的生命周期模型（life cycle model）及其所有相互关联的工序（process）

按照同样的步骤，我们还将创建牛奶包（a cow milk pack）的产品系统（product system）。这样，我们就可以对它们进行比较，并对它们不同的环境影响做出一些考虑。（英文原文：Following the same steps, we'll also create the product system of a cow milk pack. This way, we can compare them and draw some considerations about their different environmental impact.）

图 7 牛奶包的生命周期模型和相关全部的工序
牛奶包装（cow milk pack）的生命周期模型（life cycle model）及其所有相互关联的工序（process）
（英文原文：Life cycle model of a cow milk pack, with all it interconnected processes）

Calculating the Life Cycle Inventory (LCI) and Life Cycle Impact Assessment (LCIA)

计算生命周期清单（LCI）和生命周期影响评估（LCIA）
准备好您的生命周期模型 (life cycle model) 后，计算产品的清单了 (inventory of your product)。这为您的产品在整个生命周期中使用和排放的材料和资源提供了见解。这是生命周期清单 (LCI)，在 openLCA 中，可以通过单击产品系统窗口 (product system window) 中的 “计算 Calculate” 来获得。 (英文原文 With your life cycle model ready, it’s time to calculate the inventory of your product. This provides insights into the materials and resources utilized and emitted throughout the life cycle of your product. This is the Life Cycle Inventory (LCI) and in openLCA, it can be obtained by clicking on "Calculate" in your product system window.)

“清单结果 Inventory Results” 选项卡将打开并包含一个表，其中包含产品系统的输入和输出流，显示每个输入和输出的数量和单位。 (英文原文 The "Inventory Results" tab will open and contain a table with input and output flows of the product system, showing amounts and units for each of them.)

图 8 计算清单结果
To generate the Life Cycle Impact Assessment (LCIA), you need to add an LCIA method to the calculation. After clicking on "Calculate" in the product system window, you need to choose an "Impact assessment method" from the drop-down menu, which will calculate the environmental impact from the life cycle inventory.

Check the "LCIA methods and categories" and "Calculation and Results Analysis" sections to learn more.
Comparing life cycle models using projects

使用项目比较生命周期模型

比较生命周期模型结果 life cycle model results，即产品系统 product systems，可以对其相对环境性能提供有价值的见解。在 openLCA 中，这是通过项目 projects 完成的。（英文原文 Comparing life cycle model results, i.e. product systems, can provide valuable insights into their relative environmental performance. In openLCA, this is done via projects.）

图 10 用 EF 法获得的一包燕麦奶与一包牛奶的相对影响结果
(Relative impact results of one pack of oat milk vs one pack of cow milk, obtained using EF Method)

查看“项目 project”部分了解更多信息。
（Check the "Project" section to learn more.）

您已经成功地完成了 openLCA 中的关键步骤。有了这些知识，您现在可以开始做出明智的决策，以提高产品和流程的环境性能。（英文原文 You have successfully gone through the key steps in openLCA. With this knowledge, you can now start making informed decisions to improve the environmental performance of your products and processes.）

接下来，我们将系统地介绍 openLCA 的特点。
（Next, we will go systematically through the features of openLCA.）
第5章 首次运行软件认识菜单

首次运行软件 Running openLCA for the first time

打开软件后出现欢迎界面。

图11 软件 OpenLCA 的欢迎界面

欢迎页面提供了到 openLCA Nexus（在线数据库）、教学视频、案例研究、用户手册、openLCA下载页面的快速链接，您可以在该页面下载最新版本的软件以及LCIA方法，最后还提供了一个链接，以获取有关openLCA网络及其用户的更多信息。

相关的菜单

一级菜单为 File 文件，Database 数据库，Tools 工具，Help 帮助，openLCA search function 搜索功能，working with tabs 使用表格。

File 文件下的二级菜单有

- Save/Save As/Save All 存储文件功能，
- Close/Close All 关闭文件功能，
- Preferences 偏爱设置功能（繁体中文为优先菜单）。在Preferences 偏爱设置功能的下级菜单 Configuration 配置功能可以选择多种语言，包括英语、中文、法语、德语、意大利语、波兰语、西班牙语、土耳其语、阿拉伯语。但是选择后软件界面是繁体中文，帮助文件还是英文。
图 12 在 File-Preference -Configuration 菜单设定中文界面

图 13 只能设置为繁体中文界面
在 File 文件下，存在的菜单有。

- **Collaboration 协作**：您可以选择使用协作服务器的首选配置。有关详细信息，请参阅相应章节。
- **Configuration 配置**：您可以在十种可用语言中进行选择（阿拉伯语、保加利亚语、加泰罗尼亚语、繁体中文、英语、法语、德语、意大利语、葡萄牙语、西班牙语或土耳其语）。您还可以选择最大内存使用量，请参阅相关章节。
- **Experimental features 实验特性**。这些功能仍在开发中，但您可以通过选中此框来访问它们。我们欢迎任何进一步完善它们的反馈。
- **Import/Export 导入/导出**：在这里您可以更改 ILCD 网络设置（目前正在开发中）。
- **Logging 日志**：在这里，您可以设置 openLCA 的日志文件中应该写入哪些信息。如果需要，还可以永久打开日志文件。
- **Number format 数字格式**：如果不喜欢六进制显示格式，可在这里修改。此设置不会影响计算结果，只是为了方便您在用户界面中调整格式。

在 File 文件下，还有二级菜单如下。

- **Import 导入数据库**：请参阅“导入和组合数据库”一节。
- **Export 导出数据**：请参阅“导出数据”一节。
- **Exit 退出**：此选项关闭 openLCA，并单击 openLCA 右角的小十字

数据库菜单 Database 的二级菜单如下。

- **New Database 新建数据库**：有关创建新数据库的详细信息，请参阅“创建新的空数据库”一节。也可以通过右键单击导航窗口来激活“新建数据库”功能。
- **Restore Database 还原数据库**：有关还原数据库的详细信息，请参阅“还原数据库”一节。
- **Backup Database 备份数据库**：将数据库复制到存档文件中进行保存。
- **Validate 验证**：检查数据库中的不一致性并创建验证报告。
- **Copy 复制**：创建活动数据库的副本。
- **Rename 重命名**：重命名活动数据库。
- **Delete Database 删除数据库**：从 openLCA 中删除活动数据库。请注意，此操作是不可逆的！
- **Close Database 关闭数据库**：关闭活动数据库。或者，打开另一个数据库将自动关闭活动数据库。
- **Check linking properties 检查链接属性**：对活动数据库执行全面的提供程序检查，并在表中显示结果。它将显示流程是否缺少默认提供者，产品流或废物流是否存在于多个提供者中，产品流是否以及哪些产品流具有多个提供者，并确定与活动数据库不重要的提供者链接选项。
- **Properties 属性**：显示数据库在计算机上的位置和数据库的类型。
- **Compress database 压缩数据库**：此函数将从活动数据库中移走已删除的数据集，从而释放数据库中的空间。
- **Contents 内容**：在这两个选项卡下，可以使用“流程 flows”和“工序 processes”。单击它们会显示数据库中所有流或所有进程的列表。此选项允许您使用 CAS 编号或化学式过滤所有流量。
Tools 工具菜单的二级菜单如下。

- **Show views 显示视图**。点击 other 后，下面有 General 通用视图 和 Other 其他视图，如图 14。

![Show View](image)

图 14 菜单 工具-显示视图

在 General 通用菜单下，下级菜单内容。

- **Console 控制台**: 显示日志文件。
- **Minimap 最小匹配**: 不可用，使用 eclipse 创建 openLCA 的残余。
- **Outline 大纲**: 显示产品系统的所有流程的列表，包括其所有后台流程。它只适用于创建产品系统之后。打开产品系统的模型图（选项卡），然后从“视图”中选择“大纲”选项。轮廓允许您选择要在模型图中显示或隐藏的进程。
- **Palette: 不可用**，使用 eclipse 创建 openLCA 的遗留问题（别担心）。
- **Properties 属性**: 不可用，使用 eclipse 创建 openLCA 的遗留问题（别担心）。

在 Other 其他菜单下，下级菜单内容。

- **Commit History 提交历史记录**: 显示与协作服务器同步的提交历史记录，请参阅“与协作服务器链接”一节。
- **Compare with repository 与存储库比较**: 显示与协作服务器的比较，请参阅“与协作服务器链接”一节。
- **Navigation 导航**: 导航窗口显示已导入 openLCA 的数据库及其包含的
所有数据集。

在 Developer Tools 开发工具下面的菜单内容。

- **SQL 数据库查询工具**: 一个可以在 openLCA 中执行 SQL 查询的工具。
- **Console 控制台**: 控制台工具是我们程序的实时提要，其内容与我们的日志文件相同。
- **Python 编程语言**: 软件 openLCA 支持直接在 openLCA 中运行 Python 程序的可能性。使用此功能，您可以在 openLCA 中自动进行计算，编写自己的数据导入或导出，通过更改参数值执行灵敏度分析计算，等等。
- **IPC 服务器**: 进程间通信是通过 HTTP 实现的独立于平台的数据交换接口。IPC Server 允许通过 Python 的标准库运行 openLCA 服务。

在 Tools 工具下的二级菜单还有。

- **Bulk-replace 批量替换**: 这是一种允许用另一个流或提供程序替换流或产品提供程序的工具。Bulk-replace: It is a tool that allows the replacement of a flow or product provider with another flow or provider.
- **Flow mapping (experimental) 流映射（实验）**: 仍在开发中，但已可供您使用！Flow mapping (experimental): Still under development but already available for you!
- **Library export (experimental) 图书馆导出（实验）**: 仍在开发中，但已可供您使用！Library export (experimental): Still under development but already available for you!
- **Get EPDs from EC3 从 EC3 获取 EPD**: 使用 openLCA2，现在可以通过 Building Transparency 从 EC3（建筑中的碳体现计算器）下载 EPD。这需要访问 Building Transparency 服务器。也可以上传。Get EPDs from EC3: With openLCA 2 it is now possible to download or download EPDs from EC3 (Embodied Carbon in Construction Calculator) by Building Transparency. This requires access to the Building Transparency server. Also an upload is possible.
- **Formula interpreter 公式解释器**: 使用此解释器检查您的公式是否正确。打开公式解释器并在命令行中键入 “help”，可以访问有关解释器的更多信息。Formula interpreter: Use this interpreter to check if your formulas are correct. More information on the interpreter is accessible by opening the formula interpreter and typing "help" in the command line.

图 15 公式解释器例子

- **openLCA search function 寻找菜单。**
在页面的右上角，"搜索"功能允许您在 openLCA 中搜索关键字（例如流程、流程、社会指标、货币等的名称）。您可以在所有部分进行搜索或指定特定区域。在 openLCA2 中，您还可以在协作服务器上的可访问存储库中搜索数据集，并将它们导入到本地工作数据库中。

图 16 工具下的寻找功能
当您搜索一个术语时，您甚至可以过滤结果，如图 17。
第 6 章 数据库 Database

在 openLCA 中，“数据库 database”充当一个容器，用于组织和存储 openLCA 所需的互连元素 element。它是项目 projects、产品系统 product systems、工序 processes、流程 flow、结果 results 和进行 LCA 所需的其他重要组件的存储库。openLCA 数据库的关键元素及其关系如下所示。In openLCA, a "database" functions as a container that organizes and stores interconnected elements needed by openLCA. It serves as a repository for projects, product systems, processes, flows, results, and other important components required for conducting LCAs. Key elements of an openLCA database are shown below, with their relations.

![图 18 数据库结构（箭头代表信息流动方向）](image)

第一次启动 openLCA 后，您会注意到导航部分是空的。要开始使用 openLCA，您有两个选项：创建一个新的空数据库或恢复现有数据库（例如，您可能从 openLCA Nexus 下载的数据库，在这种情况下，请遵循 openLCA Nexus 部分的 “从 openLCA Nexus 访问数据库” 说明）。

openLCA 提供了在软件中导入多个数据库的灵活性。每个数据库都独立运行，一次只能有一个数据库处于 “活动” 状态，而其他数据库则保持 “非活动” 状态。这允许您将不同的生命周期评价研究或案例研究分开，以便更好地组织和管理。

然而，使用 openLCA，也可以通过合并多个数据库的内容来合并它们。这一功能实现了综合分析，包括各种数据集和生命周期评价模型。有关详细信息，请查看 “导入和合并数据库 importing and combining databases” 部分。

注：对于 openLCA 中执行的每个案例研究/LCA 项目，使用一个数据库是一种良好的做法。
数据库的元素

打开或创建数据库后，您将在导航面板中看到以下元素。

- **Project 项目**：项目作为比较不同产品系统的平台，允许用户评估和评估各种场景。

- **Product Systems 产品系统**: openLCA 中的产品系统是一组相互连接的工序 processes，通过流程 flow 连接，对产品的生命周期进行模。它们对于计算清单结果和进行影响评估，概述生产或修改产品和材料所涉及的过程至关重要。（原文 Product Systems: Product Systems in openLCA are sets of interconnected processes, linked by flows, that model the life cycle of a product. They are essential for calculating inventory results and conducting impact assessments, outlining the processes involved in producing or modifying products and materials.）

- **Processes 工序**: 工序 Processes 是一组相互关联或相互作用的活动，在产品的生命周期内将输入 input 转化为输出 output。它们概述了生产或修改产品和材料所涉及的活动顺序，构成了产品系统结构的核心。 （原文 Processes: Processes are a set of interrelated or interacting activities that transform inputs into outputs within a product's life cycle. They outline the sequence of activities involved in producing or modifying products and materials, forming the core of a product system's structure.）

- **Flows 流**: 流表示生命周期中的产品和材料，在工序网络 process network 中连接。它们可以是输入 input、输出 output、能源 energy 和排放 emissions。
Flows: Flows represent products and materials in a life cycle, connected within the process network. They can be inputs, outputs, energy, and emissions.

- **EPDs (Environmental Product Declarations)**: openLCA allows import and creation of Environmental Product Declarations, EPDs. EPDs provide verified, aggregated environmental performance information for specific products.

- **Results**: openLCA results are stored impact assessment results obtained from calculating product systems.

- **Indicators and Parameters**: Indicators and parameters are flexible components that can replace simple input/output values at different levels of processes, product systems, projects, and databases. They are flexible models and ideal for scenario analysis where certain aspects of the model need to be changed to assess the potential impact on the calculation results.
 - **Impact Assessment Methods**: In openLCA, you can import different impact assessment methods. These methods provide the framework and algorithms to quantify and assess the environmental impacts associated with the product systems.
 - **Impact Categories**: Impact categories are the environmental issues that may be involved in lifecycle analysis (such as “global warming” or “human toxicity”).
 - **Social Indicators**: In openLCA, users can assess social impacts and incorporate social factors into lifecycle assessment.
 - **Global Parameters**: Global parameters can be found at all levels of the database (process, product system, etc.) and are effective. For example, they can be used to modify formulas and amounts across processes and also to modify settings that should be effective throughout the database, making them very powerful.
 - **Data Quality Systems**: Data quality systems are matrices that evaluate and record the data quality reliability at three hierarchical levels: overall data quality in the process, quality of each individual data exchange, and social data quality. Quality can be calculated at each level of the data exchange and displayed in the results, LCIA results, impact analysis, and sankey diagrams. In addition, uncertainty values can be calculated and used for Monte-Carlo simulations.

- **Background Data**: Background data summarize the elements that users typically don't engage with often, like units, locations, and so on. The menu below is:
 - **Flow Properties**: Flow properties are characteristics or properties associated with flows, such as length, mass, volume, or other relevant attributes that help in quantifying and analyzing the flows.
单位组：单位组是给定流动特性的单位集合。例如，平方米（m²）、平方英尺（ft²）和平方码（sq.yd）等面积单位属于同一单元组。一个单元组总是有一个参考单元，同一组中的其他单元可以从一个转换为另一个。

Currencies 货币：在 openLCA 中，您可以将成本分配给工序，从而可以计算产品或服务的生命周期成本。

Actors 行动者：行动者代表个人或实体。参与者可以是研究人员、专家或利益相关者，例如数据提供者、审查者、作者等。

Sources 来源：来源包括参考文献、引文等。openLCA 允许存储原始 pdf 报告和其他来源的支持信息。

Locations 位置：位置只是位置，可以是一个地区、一个国家或地图上的任何其他点。它们对于供应链本地化和计算区域影响非常重要。

注：openLCA 利用通用唯一标识符 (UUID) 来识别和管理所有实体，包括工序、流程、产品系统、项目、参数、影响类别和影响评估方法。UUID 是标准化的标识符，确保跨系统或数据库的唯一性，甚至从一个用户到另一个用户。

Note: openLCA utilizes Universally Unique Identifiers (UUIDs) to identify and manage all entities, including processes, flows, product systems, projects, parameters, impact categories, and impact assessment methods. UUIDs are standardized identifiers ensuring uniqueness across systems or databases, even from one user to another.

6.2 建立一个新数据库 Creating a new empty database

要在 openLCA 中创建新数据库，请执行以下步骤。
1. 在导航窗口中右键单击，然后选择“新建数据库”。
2. 在弹出窗口给数据库命名。

图 20 建立一个新数据库

在向导中，您可以从以下“数据库内容”选项中进行选择：

- Empty database 空数据库：如果要创建一个没有任何数据的空白数据库，请选择此选项。如下图所示，所有文件夹都是空的。
- Units and flow properties 单位和流量属性：此选项包括新数据库的“后台数据”文件夹中的流量属性、单位组和货币。
- Complete reference data 完整的参考数据：此选项提供了更全面的设置，包
括基本流量、流量特性、单位组、货币、位置和新数据库的“背景数据”文件夹中的映射文件。

图 22 三种不同的数据库的对比
注意: 通常使用“完整引用数据 complete reference data”设置创建数据库，除非您使用 openLCA 引用流以外的其他流从外部源导入数据集。例如，您可以导入整个 SimaPro 数据库，只需使用其中的所有流和 LCIA 方法。单位在不同的数据库和 LCA 软件系统中引起的问题较少（每个 LCA 软件都有一个单位“kg”），当然，你需要单位，因此在一个空的数据库中，你需要自己创建所有东西。从包含单元等最基本内容的数据库开始可以节省时间。

生态发明地质位置及其各自的几何形状现在直接添加到参考数据中。因此，如果您使用“完整参考数据 Complete reference data”模板创建数据库，它将包括这些地理位置。 （原文 The ecoinvent geographies, along with their respective geometries, are now directly added to the reference data. Hence, if you create a database using the "Complete reference data" template, it will include these geographies. ）

完成选择后，只需单击“完成”即可完成并创建新数据库！

6.3 恢复一个数据库 Restoring a database

恢复数据库可以将整个 openLCA 数据库以及所有元素、流程数据集、模型等导入到当前使用的 openLCA 系统中。这很有用，例如，用于恢复备份，或用于从项目或同事迁移所有 LCA 工作。

为了恢复一个完整的数据库，您需要一个来自 openLCA 的 zolca 文件。例如，openLCA-Nexus 提供的大多数文件都是 zolca 文件（有关从我们的平台下载数据库的模式详细信息，请参阅“参考资料”中的“openLCA Nexus”部分）

要恢复完整的数据库，请执行以下步骤:
1. 右键单击导航窗口并选择“恢复数据库”。
2. 从中选择要恢复的 zolca 格式数据库文件。

注: zolca 文件格式是由 GreenDelta 专门开发的，用于压缩和打包 openLCA 数据库，用于备份和共享目的。
注意：程序将文件解压缩到不同的目录（C:\Users\NAME\openLCA-data-1.4）。因此，原始 zolca 文件保持压缩状态，不会直接受到软件中数据库更改的影响

6.4 数据库升级 database update

openLCA 有一个内部数据库，用于存储导航树中可见的所有不同元素（或者，至少大部分元素）。有了新的 openLCA 版本，内部数据库的结构，即 IT 术语中的数据库模式，可能会发生变化，例如，因为在新版本中添加了新元素。

当您尝试在 openLCA 中使用较旧的数据库模式打开数据库时，软件会检测到差异并提示您更新数据库。更新后，您的数据库将与新版本的 openLCA 兼容。

图 23 升级新版数据库前首先备份当前数据库
注意：一旦数据库更新，它将只与较新版本的 openLCA 兼容。它无法恢复为与旧版本的 openLCA 兼容！建议在更新数据库之前先创建数据库的备份。

完成这些步骤后，数据库将打开并自动成为您的活动数据库（由黄色图标和粗体文本指示），您将看到带有各种文件夹的导航面板。

图 24 升级后数据库成为当前活动数据库
6.5 进口和合并数据库 Importing and combing database

我们已经描述了“恢复数据库”功能，它专门用于 zolca 文件。由于处理数据，特别是在生命周期清单数据收集阶段，相当复杂，openLCA 支持各种数据格式。

支持进口和出口的数据库格式如下:

- EcoSpold1
- ILCD （International Life Cycle Database 国际参考生命周期数据系统）
- Excel （Excel 表格数据格式）
- SimaPro CSV （商业软件 SimaPro 的数据库格式，CSV 格式）
- Zolca （运行免费 OpenLCA 的母公司 GreenDelta 公司的数据）
- JSON-LD （新型的 Web 标准，联合数据格式，JavaScript Object Notation for Linked Data）

Importing data 进口数据

要将数据导入 openLCA，请单击菜单“文件 File”，然后单击“导入 Import”，或者右键单击导航窗口 Navigation Window 并选择“导入 Import”。

图 25 进口数据

在“Import 导入”菜单部分，您可以找到以下选项:

- **File 文件**: 此选项允许您导入各种格式的数据，包括 zolca、EcoSpold1、Excel、HSC Sim Flow（实验）、ILCD 和 SimaPro CSV。导入格式会自动检测到。
- **From Git... 从 Git**: 此选项使您能够建立到 Git 存储库的连接，用于导入数据（我们目前不做此操作）。
- **Other 其他**: 此选项允许您手动指定导入的格式，在下面的图片中您可以看到向导。
导入数据引导窗口出现如下选项。

1. **Importing a database from an exported zolca file**
 - 从一个导出的 zolca 文件（OpenLCA 的支持公司 GreenDelta 提供的数据库）导入数据。

2. **Importing an existing database**
 - 导入一个存在的数据库。
 - 在 openLCA 中，现有数据库（existing database）是指已经在软件中导入或创建的数据库。操作步骤：（1）单击“File 文件”，然后单击“Import 导入”。（2）选择“Import entire database 导入整个数据库”，然后单击“Next 下一步”。（3）选择选项“Existing database”（现有数据库）。 （4）使用下拉菜单从可用选项中选择所需的数据库。 （5）最后，单击“Finish 完成”以完成导入过程。

3. **Importing databases as Ecospold, Excel, ILCD, SimaPro CSV, and JSON-LD**
 - 导入数据库，数据库格式是 Ecospold, Excel, ILCD, SimaPro CSV, and JSON-LD。
 - 导入不同格式的数据库。操作步骤：（1）如果需要，请在 openLCA 中创建一个新的空数据库。（2）在导入数据之前，双击目标数据库以将其激活。（3）导航到“File 文件”菜单并选择“Import 导入”。从选项
中选择“other 其他”。(4) 选择要导入的数据库的特定格式（例如, Ecospold、Excel、ILCD、SimaPro CSV 或 JSON-LD）。不同数据库格式步骤稍有微调。

- 对于 SimaPro CSV 文件, 在窗口中添加一个流 Flow，然后选择一个流映射文件。如果要导入多个没有映射文件的 CSV 文件，请将所有 CSV 文件一起导入以确保映射正确。
- 对于 ILCD 文件，请从目录中选择导入文件。ILCD 数据库必须采用 zip 格式才能导入。
- 对于 Ecospold1 文件，请确保使用流映射文件检查和分配单元。
- JSON-LD 是 openLCA 的内部格式。您可以导入整个数据库，也可以选择要导入的特定产品系统或任何其他数据库元素。
- 选择完毕数据类型的数据后，点击“Finish 结束”按钮来启动导入数据。

Importing GeoJSON files 导入 GeoJSON 文件。 在 openLCA 第 2 版起，我们引入了一个新功能, 该功能允许导入 GeoJSON 文件，因此您可以将现有位置的地理信息合并到数据库中。该功能将数据库中位置的名称、UUID 或代码等属性与相应 GeoJSON 文件中指定的功能进行比较。这有助于找到并分配适当的位置。例如，您可以使用此方法导入地理对应的 Ecoinvent 数据库数据 Geography ecoinvent 中可用的 ecoinvent 位置的 GeoJSON 文件。在数据库中, GeoJSON 数据以压缩的二进制格式存储。这种方法减少了存储需求，并确保了数据的快速加载。操作步骤: (1) 在“Other 其他”下的导入向导中选择“GeoJSON 中的几何图形，Geometries from GeoJSON”。(2) 选择 GeoJSON 文件所在的文件夹。(3) 选择要导入的特定 GeoJSON 文件。注意：如果所选文件夹中的 GeoJSON 文件是压缩格式的，请在继续操作之前提取或解压缩它，因为导入向导只能添加未压缩的 GeoJSON 文件。GeoJSON 文件可能在文件夹视图中不可见，但一旦选择文件夹，它将在导入向导中可见。

Combining databases 合并数据库。 在 openLCA 中，可以将多个数据库合并为一个数据库。openLCA-Nexus 中可用的数据库经过仔细映射，以确保每个数据库中的所有元素都得到准确识别和应用。这种映射防止了在导入过程中产生重复流，并保证了影响评估方法的正确运行。操作步骤: (1) 首先导入第一个数据库。建议先导入最大的数据库，以最大限度地缩短编译时间。(2) 双击导入的数据库以激活该数据库。(3) 现在，您可以继续导入其余的数据库。(4) 该软件将自动组合数据库。此过程的持续时间可能因所涉及数据库的大小而异。您可以参考这段关于结合 ecoinvent 3.1 数据库进行视觉指导的教学视频。

6.6 使用匹配文件和验证数据库功能

Using mapping files and validate database

当集成来自不同 LCA 软件的数据库（这些软件对基本流使用不同的名称）时，映射文件对于将这些数据库导入 openLCA 至关重要。这些文件描述了源系统中
的流与 openLCA 中的流之间的对应关系，便于基本流引用的匹配。通过使用映射文件，您可以在数据库导入过程中将另一种数据格式的基本流参考系统与 openLCA 的流参考系统对齐。映射文件采用.csv 格式，包含精确映射所需的数据。为方便起见，最常见格式的映射文件包含在具有完整参考数据的数据库中，请参阅 "Creating a new empty database 创建新的空数据库" 一节。

刚刚创建的数据库在背景数据下有一个 "mapping files 映射文件" 部分，您可以在其中找到 SimaPro、EcosPold1 或 ILCD 的映射文件。

图 27 导航面板总的映射文件（匹配文件）的位置

图 28 映射文件（匹配文件）的例子

Mapping files 映射文件（匹配文件）要求不同格式的数据库在 "导入数据库 importing a database" 时选择格式，推荐是 csv 格式。CSV 格式是用逗号或者分隔符号隔开的 txt 文件，导入后可形成表格文件。
图 29 推荐使用 CSV 格式导入不同的数据库来映射文件（匹配文件）
始终检查映射文件如何适合您的数据，并记住您也可以按照此链接上描述的列模式创建自己的映射文件。

如果您有一个新的映射文件，您可以右键单击“Mapping files 映射文件”，然后单击“Import 导入”来添加它。 If you have a new mapping file, you can add it with a right click on "Mapping files" and then "Import". 如图 30。

图 30 在背景数据中导入一个新的映射文件

您也可以通过顶部“Tools 工具”下的主菜单栏访问 mapping files 映射文件。 You can also access the mapping files through the main menu bar at the top under
“Tools”. 如图 31。

图 31 在工具菜单下导入一个新的映射文件

对于基本流或提供者的手动更正，您也可以使用“Tools 工具”下的“Bulk-replace 批量替换”功能。For the manual correction of elementary flows or providers, you can also use the "Bulk-replace" function under "Tools". 如图 32。

图 32 使用批量替换功能手动更换流

注意：请始终确保使用“Validation 验证”（见下文）或在计算后正确完成映射，查看“LCIA 检查, LCIA checks”选项卡。有关详细信息，请查看“Results Analysis 结果分析”一章。Note: Please always make sure that your mapping was done correctly using the "Validation" (see below) or after a calculation, having a look into the "LCIA checks" tab. Check out the "Results Analysis" chapter for details.

验证数据库 Validation of a database

验证选项用于在导入和映射过程之后确认数据库内相互链接的完整性。它确保数据库中的所有连接都能正确、准确地运行。验证数据库特别有助于确认从外部源导入的数据的准确性及其与现有数据库的集成。要验证数据库，右键单击它,
然后单击“Validate 验证”。
如果验证过程遇到错误，在进行进一步修改之前，解决任何缺失的链接至关重要。如果验证被证明是不可能的，建议放弃最近的更改，重新检索存储库，然后通过提交修改重新开始。

Examples of validation messages 验证消息示例： 如图 33。

- the presence of duplicates or synonyms for a unit 一个单位的重复或同义词的存在
- the quantitative reference is a product input or waste output 定量参考是产品输入或废物输出

![Example of errors when validating an active database](image)

图 33 验证数据库中报告错误信息的例子

通常，当从存储库中检索损坏的记录时，或者数据库的流看起来不兼容时，可能会出现错误（在导入过程中可能需要使用映射文件）。

6.7 导出数据库 Exporting database

在 openLCA 中导出数据库允许用户以各种格式提取和保存数据，以便进一步分析或共享。

openLCA 支持多种格式的数据导出，可适应不同的需求：

- **Ecospold**: Allows exporting impact assessment methods and processes. 允许导出影响评估方法和过程。
- **Excel**: Enables exporting processes, analysis results, Monte Carlo simulation results, and more. 支持导出过程、分析结果、蒙特卡洛模拟结果等。
- **ILCD Network Export**: Allows exporting data in the XML-based format adapted from the *International Life Cycle Data system* format.
- **SimaPro CSV**: Provides compatibility for exporting data in SimaPro CSV format.
- **JSON-LD**: Allows exporting databases in JSON-LD format, which is a standard for linked data encoding.

导出数据的操作步骤为：
1. 双击要从中导出的数据库，激活该数据库。
2. 点击“File 文件”并选择“Export 导出”打开导出向导。
3. 在这里，我们提供了导出不同数据类型的具体说明：

- **Ecospold**: Choose either "Impact method"s or "Processes" after clicking on "Ecospold". Select the destination directory and the datasets to export, then click "Finish".

图 34 导出数据的操作步骤

如图 35。
图 35 选择数据或工序来导出

- **Excel**：要将流程导出为 Excel 文件，请在单击“Excel”后选择“Process工序”。指定导出目录和要导出的进程，然后单击“Finish 完成”。每个过程都将保存为一个单独的 Excel 文件。
- **ILCD ZIP-file**：在导出向导中选择“ILCD ZIP file”。选择要以 ILCD 格式导出的导出目录和数据库元素。单击“Finish 完成”。如图 36。

图 36 选择某路径的数据导出为 ILCD 格式文件
• SimaPRo CSV：可以在 SimaPRo CSV 中导出 LCIA 方法或过程之间进行选择。然后单击“Next 下一步”选择要导出的元素，选择 CSV 的收件人文件夹，最后单击“Finish 完成”。

• JSON-LD：在导出向导中选择“JSON-LD”。选择一个导出目录和要导出的数据库元素，然后单击“Finish 完成”。有关 JSONLD 的详细信息，请单击此处。

复制功能 Copy function

openLCA 允许用户轻松地从任何表中复制信息，并将其粘贴到 Excel 或记事本等其他应用程序中。有关详细信息，请查看“导入和导出数据”部分。

第 7 章 流 Flow

流定义 Flows

流的定义：流代表在整个生命周期中移动的产品和材料，在工序网络中相互连接，并以输入、输出、能量或排放的形式存在。流量可以是物质、产品、材料、能量载体、排放物或其他类型的输入或输出。流的特征在于其名称、流类型和参考流属性（表示流的单位类别）。流动的例子包括电力、水、二氧化碳排放、铝等。Flows represent products and materials that move throughout a life cycle, interconnected within the process network, and take form of inputs, outputs, energy, or emissions. Flows can be substances, products, materials, energy carriers, emissions, or other types of inputs or outputs. A flow is characterized by its name, flow type, and reference flow property (unit category in which the flow is expressed). Examples of flows include electricity, water, CO2 emissions, aluminium, and so on.

通常在 openLCA 中有三种流：
- 元素流 Elementary flow
- 产品流 Product flow
- 废物流 Waste flow

如图 37。

![Icon Description]

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑️</td>
<td>Elementary flow</td>
</tr>
<tr>
<td>🌐</td>
<td>Product flow</td>
</tr>
<tr>
<td>🗑️</td>
<td>Waste flow</td>
</tr>
</tbody>
</table>

图 37 三种流

Elementary flow 元素流 = 没有人类活动干扰的自然界存在的物质和排放物，如天然矿石、天然木材、天然水、天然气体等。

Product flow 产品流 = 人员加工后形成产品或副产物，非废物的物品或能量。

Waste flow 废物流 = 人类加工形成的报废处理物品。
- **Elementary flow 基本流**: 这些流表示物质或能量进入系统，这些物质或能量是在没有经过先前人类改造的情况下从环境中提取的，或者物质或能量离开系统并释放到环境中，而没有经过进一步的人类改造。例如，从地下提取的原油，或释放到空气中的排放物。
- **Product flow 产品流**: 这些流不是基本流或废流，代表产品系统内过程之间交换的材料或能量。
- **Waste Flow 废物流**: 废物流是持有者需要处理的任何物质或物体，如没有市场价值的副产品，或需要回收的资源超过其经济回报的副产品。

openLCA 中创建的每个流都必须与一个参考流特性相关联，如质量、体积、面积等。尽管如此，同一流也可能具有多个流特性（例如，铀可以使用质量和放射性单位进行测量，气体可以使用质量和体积单位进行测量等）。

注：某些废物流也可以建模为产品流。在数据库中，这通常在名称中说明。废纸就是一个很好的例子。由于废纸可用于纸张生产，因此废纸不一定被建模为废物流，而是被建模为产品物流。

7.1 创建一个新的流 Creating a new flow

要在 openLCA 中创建新流，请执行以下步骤：

1. 右键单击活动数据库中的“Flows”文件夹。
2. 从上下文菜单中选择“New flow”（新流）。

![Creating a new flow](image)

图 38 创建一个新的流

流创建窗口将自动打开。在这里，您可以提供流的名称，将流类型调整为产品流、元素流或废物流。
7.2 流表格 Flow tabs

流表格的构成 Flow tab content

在 openLCA 中打开流后，您会在窗口底部找到选项卡，这些选项卡可以访问与流相关的不同信息和设置。这些选项卡根据流是产品流、废物流还是基础流而有所不同。让我们探究一下这些选项卡的内容:

- General information 通用信息（或基本信息、一般信息）
- Flow Properties 流特征
- Characterization Factors (for elementary flows only) 特征系数（仅适用于元素流）

- General information 通用信息
 - General information 一般信息：在这里，您可以查看和修改流的名称，添加描述、其他详细信息或标记，并使用流作为参考创建流程。
 - 简小“基础设施流”的注意事项：此复选框用于存储流是否为基础设施流（因此，流是一种使用寿命长且成本高昂的产品——建筑、机械等）。这是 EcoSpold1 格式中的一个必填字段，SimaPro 也使用它，例如在 openLCA 中，它没有实际效果。
 - Used in Processes (for product and waste flows only) 在工序中使用（仅适用于产品流和废料流），本节显示消耗或产生过程的流程。双击一个进程将在编辑器中打开以进行进一步的探索。
Additional Information 附加信息
您可以使用此部分包括额外的详细信息，如 CAS 编号、化学式、位置和同义词，以便于搜索和识别流程。

图 41 一个流的通用信息例子

Flow Properties 流特征
在“流属性”部分，您可以修改流的引用属性。点击绿色加号图标，您还可以添加与流程相关的任何其他属性（如经济属性、技术属性等）。或者，您也可以右键点击属性表并选择“新建”来添加新属性。输入其他流特性时，还需要输入一个转换系数，以允许在不同特性之间进行转换。
图 42 增加或编辑流特征的例子

图 43 在化学式中转换系数的例子

- **Characterization Factors (for elementary flows only)** （特征系数（仅适用于基本流））
 仅对基本流，您有一个名为 “Characterization Factors” 的第三个选项卡。在此选项卡中，您可以查看流所涉及的一个或多个影响类别（如果有）、与该类别相关联的影响方法、与流相关联的位置（如果有的话）、每个影响类别的特征因子以及相应的单位。

图 44 基本流的特征系数例子
第8章 工序 Process

工序 Process

Process 工序处理或者过程 是在产品 product 或系统 system 的生命周期内发生的一组相互关联的活动，并将输入 Input 转化为输出 Output。Process 工序 可以是制造工序 manufacturing process、运输活动 transportation activity、能源生产工序 energy generation process 或生命周期内的任何其他操作。Process 过程 是由其定量参考来定义的，该参考代表了工序提供的产品或服务的数量。例如，一个工序可以是1公斤钢铁生产中发生的所有输入和输出的集合。

单位过程和系统过程的图标区别 Unit process and system process icons

openLCA 区分了两种类型的过程：
- **Unit process 单位工序**：单位工序是生产系统中最小（聚合最少）的单元，其输入和输出数据是量化的。它可以包含任何流类型。Unit process: A unit process is the smallest (least aggregated) unit in a production system, for which input and output data are quantified. It can contain any flow type.
- **System process 系统工序**：系统工序是保存为过程的聚合生命周期结果。System process: A system process is an aggregated life cycle result saved as a process.

单元工序（左）和系统工序（右）之间的区别如图。在左图中，从 A 到 G 的每个工序都是一个单位工序。在右图中，显示了一个聚合工序（系统工序）。

图 45 单位工序（左）和系统工序（右）的不同
单元工序和系统工序在导航窗口中显示为不同的图标，如下所示。单元工序（紫色字体颜色，空背景）和系统工序（紫色字形颜色，填充背景）。

图 47 不同图标代表单元工序（上）和系统工序（下）

在 openLCA 中，我们区分了以产品流（齿轮）和废物流（垃圾箱）为参考的工序之间的图标。

图 48 产品流图标（齿轮）和废物流图标（垃圾箱）

8.1 创建一个新的工序 creating a new process

遵循如下不再来创建一个新的工序（process）。
1. 右键单击“工序 Process”文件夹，然后从上下文菜单中选择选项“新建工序 New process”。

46
创建一个新的工序

2. 为工序 Process 提供一个名称，并通过选择现有流程 Flow 为其选择定量参考，或通过选中相应的框创建新流程 flow。如果未命名流 flow，它将自动采用与工序 Process 相同的名称。（原文 Provide a name for the process and choose a quantitative reference for it by selecting an existing flow, or create a new flow by checking the corresponding box. If the flow is not named, it will automatically adopt the same name as the process.）

为新创建的一个工序命名一个定量参考

3. 单击“完成 Finish”创建工序，然后在编辑器中打开该工序。
8.2 工序选项卡的内容 Process tab content

在 openLCA 中打开工序 process 后，您会在窗口底部找到选项卡，这些选项卡可以访问与工序 Process 相关的不同信息和设置。

图 51 工序窗口底部的选项

图 52 工序的基本资讯选项
在这里，您可以查看和修改流程 flow 的名称，添加描述、其他详细信息或标记 tag，从工序 Process 创建产品系统 product system，并将工序选项卡导出到 Excel 文件。此外，

关于 “基础设施过程” 的注意事项：此复选框用于存储过程是否为基础设施过程（因此，该过程是一种寿命长且成本高的产品——建筑、机械等）。这是 EcoSpold1 格式中的一个必填字段，SimaPro 也使用它，例如在 openLCA 中，它没有实际效果。

直接计算： “直接计算” 功能生成并计算内存产品系统，使用默认提供程序或第一个找到的连接工序。只有当这些工艺之间存在明确的联系，即产品总是只有一个生产工艺者，或总是一个默认的生产者集，以使与提供工序的联系清晰而独特，才能获得可复制和正确的结果。

如果您不确定连接，请通过 “数据库 Database→检查链接属性” 或在选择“直接计算” 后通过弹出窗口中的“检查链接”选项：

![Direct calculation](image)

“直接计算” 的主要优点是内存使用率较低。它避开了预先创建单独产品系统的需要。当使用创建大型产品系统（如 PSILCA 和 exiobase）的数据库时，这一点尤其实用。

时间 Time： 在时间部分，您可以添加和编辑工序的开始和结束时间，以及提供任何相关描述。

地理 Geography： 在“地理位置”部分，您可以添加和编辑流程的位置。点击所选的位置，你也可以在地图上看到它。
设定地理位置

技术 Technology: 在“技术”部分，用户可以添加一个关于过程中使用的技术的描述。

数据质量 Data quality: 在这里，您可以定义流程的数据质量流模式。有关详细信息，请查看“数据质量”部分。

➢ 输入/输出 Inputs/Outputs ➢ 输入/输出
➢ 管理信息 ➢ 管理信息
➢ 建模和验证 ➢ 建模和验证
➢ 参数 ➢ 参数
➢ 分配 ➢ 分配
➢ 社会方面 ➢ 社会方面
➢ 影响分析 ➢ 影响分析

输入/输出 Inputs/Outputs: 正如我们所看到的，流程包含与操作相关的所有输入和输出。让我们看看 openLCA 中工序的输入/输出表的设置。
在右上角，您将看到几个图标："刷新"（带圆圈的箭头）、"添加流"（绿色+）、"删除流"（红色x）和一个“123”/“fx”图标，可用于在将“金额”显示为值或公式（应用数学运算时）之间进行切换。

注：废物也可以设计为openLCA中涵盖回收方法的输入。然后可以选择“避免产品”来定义供应商。查看“废物”部分了解详细信息。

Administrative information “管理信息”选项卡：用于输入或查找与数据集相关的详细信息，如所有权、发布、访问和使用限制等。需要注意的是，管理信息部分中的条目不会对实际计算产生任何影响。

Administrative Information: Steel cold rolled coil Asia 2020, production mix, at plant, blast furnace route, 1 kg, typical thickness between 0.15 - 3 mm, typical width between 600 - 2100 mm - Asia

<table>
<thead>
<tr>
<th>Administrative Information</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended application</td>
<td>The primary goal of the study is to develop a unified and rigorous LC methodology for steel products worldwide in accordance with the worldsteel position paper on LCA and related ISO14040 set of standards to provide reliable data to meet requests from customers and external studies. Further goals are to promote the environmental credentials of steel and to develop steel industry expertise in the subject. To quantify resources use, energy and environmental emissions associated with the processing of steel industry products are currently considered from the extraction of raw materials in the ground through to the finished product at...</td>
</tr>
<tr>
<td>Data set owner</td>
<td>World Steel Association</td>
</tr>
<tr>
<td>Data generator</td>
<td>World Steel Association</td>
</tr>
<tr>
<td>Data documentor</td>
<td>(text) EQ</td>
</tr>
<tr>
<td>Publication</td>
<td>name</td>
</tr>
<tr>
<td>Access and use restrictions</td>
<td>worldsteel has provided the permission to include the LC information (cradle-to-gate) on regional and global steel industry products as well as the value of steel scrap as a separate LCI. The data set can be used free of charge by anybody to perform LCA studies. Any use of the LC data outside of the graph software and databases should not be considered before having received any written permission from worldsteel. Please note also, that any modifications/omissions of the data set results a validity of any existing ‘official approval of data set by producer/operator’. The impression must be avoided that this would still...</td>
</tr>
<tr>
<td>Project</td>
<td>worldsteel Life Cycle Inventory Study for Steel Industry Products, 2017</td>
</tr>
<tr>
<td>Creation date</td>
<td>2/24/21, 11:21 AM</td>
</tr>
</tbody>
</table>
| **Copyright** | }
图57 建模和验证选项卡

建模和验证”选项卡允许用户:
- 指定流程类型，无论是单元流程还是系统流程。
- 描述所使用的生命周期清单（LCI）方法。
- 注意分析中使用的任何建模常数。
- 提供有关数据完整性的信息。
- 讨论数据选择过程（如果与您的研究相关）。
- 详细说明所应用的数据处理方法。
- 讨论用于数据收集的采样程序。
- 定义并记录数据收集周期。
- 要添加数据源，请单击“源 Sources”部分中的绿色“+”图标。如果未列出所需的来源，您可以通过右键单击导航中的“来源 Sources”文件夹并选择“新建来源 New source”来添加新来源。
- 您还可以通过单击此部分中的蓝色“添加执行者 Add actor”图标来包括评审员。如果要添加的演员没有列在“执行者 Actors”下，您可以通过右键单击导航面板中的“演员 Actors”文件夹并选择“新建演员 New actor”来创建一个新演员。
需要注意的是，建模和验证部分中的条目对实际计算没有任何影响。

- **影响分析 Impact analysis:** 在“影响分析”选项卡中，将根据所选的影响评估方法自动计算流程直接影响。这允许您在进行整体 LCA 计算之前估计过程影响。查看“直接计算”部分。

图 58 增加一个新的执行者

深入理解 LCA 计算的主题，您可以浏览“LCIA 方法和类别 LCIA methods and categories”和“计算和结果分析 Calculation and Result Analysis”部分。

图 59 工序的影响分析
第 9 章 产品系统 Product systems

产品系统的定义 Product systems

在创建工序 processes 和流程 flows 之后，是时候创建产品系统 product systems 了。它们是生命周期模型，用于计算清单结果和影响评估。

ISO 14040 将“产品系统 product system”描述为“具有基本流程和产品流程的单元工序的集合，执行一个或多个定义的功能，并对产品生命周期进行建模。”在 openLCA 中，产品系统是由流程连接的一组工序，执行一种或多种定义的功能并对产品生命周期进行模型化。产品系统有一个参考过程，其中包含定义数量的产品（称为功能单元 functional unit），作为计算系统内所有连接过程影响的基础。（原文 A "product system" is described by ISO 14040 as a "collection of unit processes with elementary and product flows, performing one or more defined functions, and which models the life cycle of a product." In openLCA a product system is a set of processes connected by flows, performing one or more defined functions and modelling the life cycle of a product. A product system has a reference process with a defined amount of the product (referred to the functional unit), which serves as basis for calculating impacts for all connected processes within the system.）

9.1 创建一个新的产品系统 Creating a new product system

在本节中，您可以学习如何创建产品系统并指定其设置：

有两种方法可以在 openLCA 中创建新的产品系统。您可以使用导航面板，然后手动添加参考流程，也可以直接从打开的流程创建参考流程，该流程将自动选择为新产品系统的参考流程。两者也可以组合使用，即手动创建系统的一部分，然后让软件自动完成剩余的供应链。

自动连接进程允许您快速创建大型系统，实际上由数千个连接的进程组成；如果连接已经从数据库中清除，这是很好的，因为每个产品只有一个可能的连接（提供者进程），或者因为进程设置了默认提供者。手动连接使您能够完全控制连接，这对于 GaBi 或 EF 等连接不明确的数据库来说是必要的。

在导航面板中创建产品系统
Creating a product system in the navigation panel

要从导航面板创建产品系统，右键单击“产品系统 Product systems”文件夹，然后选择“新建产品系统 New product system”:
从工序创建产品系统

Creating a product system from a process

要直接从所选工序创建产品系统，请转到流程的“常规信息 General information”选项卡，然后选择“创建产品系统 Create product system”:

产品系统设置

Product system settings

将出现“新产品系统”弹出窗口，您可以使用它来定义产品系统的名称，并选择参考流程、提供商链接、首选流程类型和您喜欢的截止选项。
参考工序 Reference process：参考工序是对供应链的最后一步或特定链的最后步骤进行建模的过程。例如，电池组的生产可以代表感兴趣的整个供应链，也可以代表电动汽车生产模型中的中间阶段。如果您想评估电池组的潜在影响，则选择相应的流程“电池组”作为参考流程。要将引用工序添加到您从导航面板创建的新产品系统中，您可以在“引用工序”字段中键入工序的名称，或浏览工序文件夹。如果您直接从工序创建产品系统，则该工序将自动选择为参考工序。

自动链接 Auto-linking：自动链接功能分析工序的输入和输出流，并识别不同工序之间的通用或匹配流。因此，它自动在这些工序之间创建链接，建立必要的依赖关系和连接。使用自动链接功能，可以节省在 LCA 模型中手动链接工序的时间和精力。它有助于确保模型中的材料和能量流得到正确考虑，并有助于创建更准确、更全面的生命周期评估。要自动将所有上游流程链接到参考工序，请选择“自动链接工序”。

检查多提供商链接（实验性） Check multi-provider links
刚刚添加此选项是为了方便您，还可以检查与各种提供商的链接（请稍后检查“模型图”选项卡）。

- 提供者链接 Provider linking: 在创建产品系统时，openLCA 可以自动检查具有多个提供者的流。然而，像 ecoinvent 这样的数据库中的许多工序都有预先选择的提供者，这些提供者被称为“默认提供者 default providers”。如果 openLCA 检测到产品系统中有多个提供者的流，您可以从三个默认提供者选项中选择 openLCA 应该如何处理这种情况。

默认提供程序的详细信息 Details on default providers
- 仅链接默认提供程序 Only link default providers: openLCA 将专门在共享默认提供程序的输入和输出流的进程之间创建链接。
- 首选默认提供程序 Prefer default providers: openLCA 将优先使用来自默认提供程序的数据创建连接。但是，如果没有设置默认的提供程序，openLCA 将考虑其他提供程序来建立连接。
- 忽略默认提供者 Prefer default providers: openLCA 在自动链接过程中完全忽略默认提供者。然后在每种情况下都将使用找到的第一个合适的过程连接。

创建产品系统后，可以在“模型图 Model graph”选项卡中添加和删除连接。

- 单元工序或系统工序 Unit process or System process: 下一步是选择连接到单元进程还是系统进程。“工序 Processes”一节介绍了两者之间的区别。只有在未使用或未指定默认提供程序的情况下，此设置才有效，因为默认提供程序始终是一个特定的工序，而该工序当时已经是一个单元或系统工序。

- 截止阈值 Cut-off threshold: 最终，可以设置一个截止阈值。对总体结果的贡献小于阈值的连接被切断。这对于具有非常大的过程网络和非常小的单个过程贡献的数据库来说非常方便，例如多区域输入输出数据库。请注意，无论单位如何，都会应用截止值。因此，它适用于所有产品都具有相同单元的数据库，例如多区域 I/O 数据库。

要最终创建产品系统，请单击“完成”!

9.2 “产品系统”选项卡内容 “产品系统”选项卡内容

在下文中，我们将描述 openLCA 中产品系统的每个选项卡：

| General information | Parameters | Model graph | Statistics |

图 63 产品系统选项卡

- 基础资讯 General information: 常规信息选项卡分为“常规信息 General information ”和“参考 Reference”。“
■ 一般信息 General Information：在这里，您可以更改产品系统的名称，并可以选择添加描述。在“添加标签 Add a tag”按钮下方，“计算 Calculate”按钮启动影响计算（您可以通过点击导航面板上方的绿色“计算结果 Calculate results”图标来实现同样的效果）。

■ 参考 Reference：在这里你可以看到产品系统的参考过程，并编辑参考产品、流量特性、单位和目标金额。目标金额应根据您的职能单位进行选择。

➢ 参数 Parameters：在产品系统级别，您可以通过选择“参数 Parameters”栏末尾的绿色“+”按钮来添加“参数 Parameters”。无法在产品系统级别上创建新参数，但您可以通过在工序中定义的参数来添加参数。您可以通过选择一个参数来自定义添加的参数，然后更改数量、不确定性或描述。要同时选择多个参数，请使用键盘的“Shift”按钮。对于给定的产品系统，保存在产品系统中的金额将覆盖保存在流程中的金额。但是，过程中保存的值不会更改。

➢ 模型图 Model graph：模型图是一种可视化和修改产品系统及其所有工序及其之间联系的工具。有关详细信息，请查看“模型图 Model graph”部分。

➢ 统计 Statistics：统计信息”部分为您提供了有关产品系统的一些基本数字和事实，如组成产品的工序数量、链接、图形是否连接以及参考工序的名称。如果图形未连接，则至少有一个部分未链接到引用的工序；显然，这样的非连通截面不能相对于参考工序进行缩放，因此不能进行计算。统计表还
提供了有关提供者链接和具有最高入级和出级的进程的信息。输入程度统计一个进程有多少个连接的输入流。输出程度表示一个过程与产品系统中的其他过程链接的次数。

图65 产品系统统计

9.3 模型图 Model graph

openLCA 中的模型图是一个强大的工具，可以直观地表示产品系统，包括其供应链（与流程的链接）。它展示了产品系统的流程和流程的相互联系，展示了产品的供应链（上游和下游）。在这里我们将详细描述它的功能。

快速启动 Quick start

如果打开模型图选项卡，您将看到产品系统的参考过程。双击图中的流程将在其输入和输出侧显示流程。您可以通过单击流程名称旁边的“+”符号来展开可见的供应链。要隐藏/折叠它，请单击“-”符号。您还可以通过在窗口中拖动进程来自由地重新定位进程，而无需断开它们的连接。
图 66 模型图展开第一层的可视化效果

具有展开（第一层）和仍然折叠的进程（第二层）的模型图。如图示，在右键单击“设置”下激活了“显示基本流程”和“启用流程编辑”选项。

要直接在图形中显示基本流和添加或删除流，请右键单击图形，单击“设置”，然后选中“显示基本流程”和“启用流程编辑”。

图 67 在模型图中激活设置

工序之间的连接被可视化为线条。可以删除这些连接或工序本身。请注意，模型的更改会对整个产品系统产生影响，只有连接的工序才会对产品系统的计算产生影响。

有了这个新功能，您可以使用棕色的“+添加流”按钮通过添加新的输入或输出流来修改工序。将出现一个弹出窗口，以便您添加或创建新流。
这允许您直接在模型图中对产品系统进行建模。将新流添加到工序后，需要添加其提供者。这可以通过右键单击流，然后“搜索提供者”来完成。

将出现一个弹出窗口，其中包含该流的所有可能提供者的列表。您可以选择正确的提供者，并选中“连接”框以添加提供者，同时将流连接到流程。同样，也可以搜索特定输出的收件人。

图 68 模型图→工序编辑→增加/创建新的流

图 69 模型图→寻找提供者

图 70 模型图→寻找提供者→连接
此外，如果您想以图形方式创建/编辑产品系统，可以将工序从导航面板拖放到模型图空白区域。然后，您可以将流拖动到提供者/接收者工序中的相应流，以创建流之间的连接。要将新添加的工序连接到其供应链，请右键单击它，然后选择“构建供应链 Build supply chain”。

图 71 模型图-拖拉一个工序形成手动连接

您也可以右键单击某个工序并选择“删除连接”，或者单击某个连接并选择“Delete”来删除连接。该软件会询问您是否也想删除或隐藏供应链。选择“否”仅删除连接。结果如下所示：

图 72 模型图-移走连接例子（之前）
图 73 模型图-移走连接例子（之后）

当您想在没有特定工序（例如本例中的“印刷线路板”）的情况下评估产品系统的影响，或者更广泛地说，在没有考虑产品的“使用阶段”等特定阶段的情况下，移除连接可能会很有用。这是一个如何使用模型图的一瞥。有关更多详细信息，请参阅以下内容:

- Zoom bar (new)
- Selecting processes
- Right-click in the model graph
- Right-click on a process in the model graph
- Right-click on a connection in the model graph
- View tab in the tool bar
- Drag and drop results into the model graph

9.4 先进的产品系统功能 Advanced product systems features

嵌套产品系统 Nested Product Systems

产品系统作为另一个产品系统的提供者，其结果就是“嵌套”的产品系统。为此，将产品系统拖放到不同产品系统的模型图中，并通过“搜索收件人 search recipients for”将其连接到其中一个输入流。
嵌套产品系统

您将看到子产品系统对总体结果的贡献，例如在影响分析和贡献树结果中。产品系统也可用作工序的输入流。产品的定量参考流程将添加到工序中。

拖拉一个产品系统进入一个工序的输入流

这在与环保署（EPDs）合作时尤其有用。查看“在供应链中使用 EPD 的结果”部分了解更多详细信息。

有关嵌套产品系统的详细信息，请访问链接（https://github.com/GreenDelta/olca-app/issues/72）。

在产品系统中使用结果 Using results in product systems

正如您将看到的（查看“保存和导出结果一章”部分了解详细信息），您现在可以保存结果并以不同的方式使用它们。其中，保存后，可以在产品系统中拖动结果：
如果使用的方法相同，您可以在清单未知的情况下使用此功能来完成供应链。在使用 EPD 时也特别有用（查看“在供应链中使用 EPD 的结果”部分了解更多详细信息）。

9.5 计算产品系统 Calculating product system

有三种方法可以访问产品影响评估的计算。您可以右键单击导航面板中的产品系统并选择“计算”，单击产品系统的“常规信息”选项卡中的“计算”按钮，或单击导航面板上方的绿色“计算结果”图标。

图 76 在产品系统中拖曳结果

图 77 在导航面板中右点产品系统选择计算产品系统
无论哪种方式，都会打开一个弹出窗口，您可以选择计算属性。

图 78 弹出窗口的计算特征
有关计算设置和结果分析的详细信息，请参阅“计算和结果分析”一节。

第 10 章 生命周期影响分析模式和种类

生命周期影响分析方法定义 LCIA methods

影响评估方法是生命周期评估的重要组成部分。它们量化了与产品、过程或服务相关的潜在环境影响。这些方法分析清单阶段的数据，并将其转化为有意义的指标。LCIA 方法涵盖了广泛的影响类别，如全球变暖潜力 global warming potential、酸化 acidification、富营养化 eutrophication 和人类毒性 human toxicity，通常旨在促进企业和个人做出明智、可持续性驱动的决策，促进更绿色、更负责任的未来。

注：如果您使用 openLCA Nexus 提供的数据库，它们通常不包含 LCIA 方法（在软件中称为“影响评估方法 impact assessment methods”）。这使我们能够更快地更新数据库和 LCIA 方法。因此，您需要在 openLCA 中的每个数据库中导入/创建 LCIA 方法，以进行生命周期影响评估。有关详细信息，请参见下文。
10.1 导入 LCIA 方法到 OpenLCA 软件 Importing LCIA method

从 Nexus 在线数据库下载 LCIA 方法

Nexus 数据库并不总是包括 LCIA 方法，允许用户选择他们喜欢的方法。我们提供了一个整体的 LCIA 方法包，适用于许多不同的数据库（当方法提供它们时，还包括归一化和加权），但也有其他特定于特定数据库的方法。

<table>
<thead>
<tr>
<th>openLCA LCIA methods</th>
<th>OpenLCA v.1.5.7</th>
<th>OpenLCA v.2.6.2</th>
<th>OpenLCA v.2.6.3</th>
<th>JSON-LD</th>
<th>Show license info</th>
</tr>
</thead>
<tbody>
<tr>
<td>openLCA LCIA methods v.1.5.7</td>
<td>1</td>
<td>OpenLCA v.1.5.7</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.6.2</td>
<td>1</td>
<td>OpenLCA v.2.6.2</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.6.3</td>
<td>1</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.6.4</td>
<td>2</td>
<td>OpenLCA v.2.6.4</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.6.5</td>
<td>2</td>
<td>OpenLCA v.2.6.5</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.1.0</td>
<td>1</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.1.1</td>
<td>2</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.1.2</td>
<td>1</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.1.3</td>
<td>4</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.1.7 for 1.11</td>
<td>1</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.1.7 for 2.0</td>
<td>1</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
<tr>
<td>openLCA LCIA methods v.2.2.1</td>
<td>1</td>
<td>JSON-LD</td>
<td>Show license info</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图 79 在 Nexus 在线数据库可下载的 LCIA 方法

下表提供了有关 Nexus 上最常用数据库的信息。您可以查看数据库是否与 openLCA 方法包兼容，以及是否有专有方法可供下载（请按照 openLCA Nexus 部分的说明 - “从 openLCA Nexus 访问数据库” - 下载数据库或方法包）。

<table>
<thead>
<tr>
<th>Database</th>
<th>Compatible with openLCA method pack</th>
<th>Proprietary method available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecoinvent</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Agribalyse v3.1</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Agri-footprint 6.3</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>ESU World Food (unit and system)</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>EuGeos® 15804_A2-IA (unit and system)</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>GaBi</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>ELCD</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>IO</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>ProBas</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>EN15804</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Ökobaudat</td>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>

图 80 在线数据库 Nexus 上常见的数据库信息
下载一个或多个这些方法包后，可以将文件导入到活动的 openLCA 数据库中。导入之前不要提取 JSON-LD 的.zip 文件！

将 LCIA 方法导入软件

要导入方法包，请单击“导入 Import”→“其他 Others”，然后单击“链接数据 (JSON-LD)， Linked Data (JSON-LD)”和“下一步 Next”。在下一个窗口中，浏览文件。程序将询问您是否要覆盖现有数据。您可以选择更新现有数据集。最后点击“完成 Finish”。

导入将自动启动，可能需要几分钟时间。完成后，LCIA 方法将在数据库中的“指标和参数 Indicators and parameters”下可用，如下所示。

![Import an openLCA data package](image)

图 81 导入 LCIA 方法到 openLCA 软件

导入将自动启动，可能需要几分钟时间。完成后，LCIA 方法将在数据库中的“指标和参数 Indicators and parameters”下可用，如下所示。

![LCIA methods in openLCA](image)

图 82 在 OpenLCA 中导入了可用的 LCIA 方法
注意：您可以稍后在 LCIA 检查中评估 LCIA 方法与数据库的兼容性。

在 openLCA2 中，影响类别独立于 LCIA 方法，而 LCIA 方法是一个“保护伞”，可以包含多个影响类别——这使您可以轻松创建自己的方法，例如，通过简单地将现有影响类别添加到例如自行创建的 LCIA 方法中，为项目创建方法。（原文 In openLCA 2, the impact categories are independent from the LCIA methods, and the LCIA methods are rather an "umbrella" which can contain several impact categories – this allows you to easily create own methods, e.g. for projects, by simply adding existing impact categories to e.g. a self-created LCIA method。）

![图 83 独立影响种类](image)

10.2 创建新的影响评估方法/类别

Creating a new impact assessment method/category

要创建新的生命周期影响评估方法：

1. 右键单击“影响评估方法 Impact assessment methods ”子类别。
2. 选择“新建 LCIA 方法 New LCIA method”。
3. 命名新方法并添加描述（可选）。
4. 单击“完成”，在编辑器中打开新的影响评估方法。

创建新的影响评估类别

Creating a new impact assessment category

此外，您还可以创建影响评估类别。如果您希望调整您的影响评估方法，将当前方法中可能不存在的化石燃料消耗等特定类别包括在内，这可能会有所帮助。

操作步骤：
1. 右键单击“影响评估类别 Impact assessment categories”子类别。
2. 选择“新建 LCIA 方法 New LCIA method”。
3. 命名新方法，添加一个参考单位和一个描述（可选）。
4. 单击“完成”，在编辑器中打开新的影响评估类别。
了解如何在影响评估方法窗口中添加影响类别、特征因素等，请参阅以下部分。

10.3 “方法”选项卡 Methods tabs

影响评估方法选项卡内容 Impact assessment methods tab contents

在从 1.x 到最新版本的 openLCA 版本中，您可以在影响评估方法选项卡中编辑和创建影响类别和因素。然而，在 2.0 版本中，此功能已被分离，现在您可以使用一组不同的单个影响类别。您可以在“影响类别选项卡 Impact category tab”中编辑其特征因子、类别、流量特性、单位和不确定性数据。

➢ 一般信息 General information
可以查看和修改方法的名称，添加描述、其他详细信息或标记，以及：
- 从数据库中的源添加源。如果不可用，请按照“数据库元素 Database elements”中的说明创建一个新源。
- 添加代号（即，类别的短名称，在结果视图中很有用）。

下图显示了 ecoinvent 的 CML-IA 基线方法的“常规信息”选项卡示例。

图 88 生命周期影响分析的一般信息选项卡

➢ 归一化/加权 Normalization/Weighting
将归一化和加权因子添加到 LCIA 方法的影响类别中，请执行以下操作：
1. 在“归一化和加权 Normalization and weighting”选项卡中打开。
2. 单击右上角的绿色“+”/双击或右键单击“归一化和加权集 Normalization and weighting set”下的空单元格以添加新集。
3. 该方法中保存的影响类别将自动显示在右侧的窗口中，然后您可以在其
中手动键入归一化和加权因子。

图 89 增加归一化和加权因子到影响种类

10.4 种类选项 Category tabs

在 openLCA2 中，LCIA 类别现在是存储在 LCIA 方法外部的独立实体。单个 LCIA 类别可以在多个 LCIA 方法中使用，并且这种 LCIA 类别的更新将在使用它的所有 LCIA 方法中将其更新。数据库更新将 LCIA 类别移动到导航中的新类别“环境指标 Environmental indicators”。

注意：由于不同 LCIA 方法中的 LCIA 类别通常具有相同的名称，因此此文件夹中也存在具有相同名称的 LCIA 分类。通过赋予这些 LCIA 类别更多描述性名称，可以很容易地改变这一点。

影响类别窗口的内容将在下面进行解释。

➢ 一般信息 General information

在这里，您可以查看和修改类别的名称，添加描述、参考单位、其他详细信息或标记，以及：

● 从数据库中的源添加源（请参阅“数据库元素 database elements”）
● 添加代码（即，类别的短名称，在结果视图中很有用）
● 选择影响方向 Impact direction

下图显示了 ecoinvent 数据库的 CML-IA 基线方法的“一般信息 General information”选项卡示例：
图 90 生命周期影响分析的一般信息选项

➢ 已经使用的影响分析方法 Used in impact assessment methods
在这个在用的选项卡中，您可以查看使用此影响类别的影响评估方法以及该方法所在的类别。

➢ 影响方向 Impact direction
在 openLCA2 中，一个新功能允许您将每个影响类别的影响方向指定为“输入 Input”或“输出 Output”（如下图所示）。基本上，资源使用类别是输入，排放相关类别是输出。当未选择特定的冲击方向时，默认设置为“未指定 Unspecified”。在选项“未指定 Unspecified”的情况下，所有表征因子及其符号（加号或减号）将被写入方法的因子表中进行计算。

图 91 影响方向设置为输入
当您选择“输入”或“输出”作为影响方向时，openLCA 会自动处理因素的符号，这取决于流是进入流程的输入（资源）还是来自流程的输出（排放）。通过这种方式，在计算过程中设置特征因子的符号，并将其显示在结果中。以水为例，在下图中，显示了一种计算淡水净使用量的影响方法，这意味着将所有用作输入的水相加，并减去所有作为输出的水损失。如果产生的总影响值为正，则用作输入资源的水比过程输出中排放的水多，反之亦然。当没有影响方向设置为“未指定 Unspecified”时，排放隔间内所有流量的水系数必须为负值，并（正确）建模为过程输出。当影响方向从“未指定 Unspecified”设置为“输入”时，所有流量的水系数都可以保持为正（见下图）。在本例中的影响计算过程中，openLCA 将自动反转过程输出中的水流符号。另一方面，如果选择影响方向“输出”，则过程输入中的水流将反转。反转后的值也将出现在结果页面的影响分析窗口中，这样用户就可以直接看到哪些流的贡献为正数，哪些流的影响为负数。

图 92 在影响方向设置为“输入”的情况下，计算淡水净使用量的影响方法中的水基本流量和特征因子（均为正）

其优点是，以“正确”的方式对过程输入中的资源和输出中的排放进行建模的所有流量都可以保持其表征的正因子。例如，对于全球变暖潜力，二氧化碳向空气的排放具有 1.0 的特征因子。从空气中去除二氧化碳的流量（将其用作资源）也可以保持 1.0 的正数，因为它基本上（但不是技术上）是相同的基本流量。设置影响方向的另一个优点是，方法内部因素的负值（当然这仍然是可能的）将直接向用户显示哪些流是在过程的“错误”相反一侧建模的。通过上面的例子，水输出（排放隔间）也可以被建模为方法内部因素的符号相反的输入。它将位于“错误”一侧，但影响方向设置为“输入”，计算结果将相同。输入不会反转，水系数将保持为负，并作为输出做出贡献。

➢ 表征因素 Characterization factors
● 添加/编辑类别中包含的流量
● 查看影响类别所属的排放类别
● 编辑相应的影响因素、单位、不确定性数据
● 添加/编辑位置
图 93 表征因素选项

- **参数 Parameters**
 参数可以以与流程相同的方式用于 LCIA 类别，请参阅“参数”一节。

- **区域化计算 Regionalized calculation**
 在 openLCA 中，可以为特征化因素和过程输入/输出指定位置。然后，这些位置将用于新的计算，并显示在重新计算中。默认情况下，对于输入和输出，将使用流程位置，但如果需要，可以在流甚至交换级别指定不同的位置。关于区域化计算的更多信息，请参阅“区域化 LCA”部分。
相似检查 Similarities

在 openLCA2 中，LCIA 类别的相似性检查作为影响类别编辑器中的一个单独选项卡提供。此功能可用于查找重复的影响类别。

第 11 章 计算和结果分析 Calculation and result analysis

完成流程建模、创建生命周期模型（产品系统）或完成项目报告构建后，是时候继续进行计算了。

要开始计算产品系统，请打开产品系统，然后按下“计算”绿色按钮。在接下来的屏幕中，您可以根据自己的要求自定义计算。您可以选择分配方法
allocation method、影响评估方法、归一化和加权集、计算类型(懒惰 lazy、渴望 eager 或蒙特卡洛模拟 Monte Carlo simulation)或是否包括区域化计算 regionalized calculations、成本计算 cost calculations 或数据质量 data quality。详细说明：

- **分配方式 Allocation method**：可以选择计算中应用的分配方式。选项是无、随意、物理、经济或“工序中定义的 as defined in process”。“无”是默认设置。“在工序中定义 As defined in process”是指在每个工序中按照前面定义的方式执行分配(在不同的工序中可以有不同的分配方法)。有关更多详细信息，请参阅“分配 Allocation”部分。

- **影响评估方法 Impact assessment method**：可以从激活数据库中可用的方法列表中选择影响评估方法。如果没有列出任何方法，则需要首先将方法包导入数据库，或者创建一个新方法。

- **归一化和加权 Normalization and weighting**：可以为值选择规格化或权重集。这一集合需要出现在影响评估方法中。如果选择的方法没有任何集合，则需要首先将它们添加到影响评估方法中。

- **渴望/全部和懒散/按需 Eager/all & Lazy/On-demand**：可以选择“渴望/全部 Eager/All”或“懒散/按需 Lazy/On-demand”模式下执行计算。渴望的计算可以提前提供完整的结果，而懒散的计算可以更快地导航和按需计算影响。有关更多详细信息，请参阅懒散 Lazy 与渴望 Eager 计算部分。

- **蒙特卡罗模拟 Monte Carlo Simulation**：可以使用蒙特卡罗模拟执行不确定性计算。该方法考虑了流量、参数和特征因子中定义的所有不确定性分布，但与系统参考产品相关的不确定性分布除外。有关详细信息，请查看蒙特卡罗模拟部分。

- **区域化 Regionalized**：如果要使用 geoJSON 文件根据区域计算结果，请选中此框。有关详细信息，请查看下面的“区域化计算”部分。

- **包括成本计算 Include cost calculation**：此选项额外执行成本计算。有关详细信息，请查看“生命周期成本计算”部分。

- **访问数据质量 Access data quality**：如果您在工序中包含了数据质量信息，此选项将计算结果的数据质量。在继续计算之前，请确保通过单击“下一步”定义数据质量评估的详细信息。特别是，这里指定的数据质量系统必须被工序所引用。有关详细信息，请查看“数据质量”部分。

11.1 惰性求值对渴望求值计算 Lazy vs Eager calculation

在计算影响结果时，您可以在渴望(及早求值)Eager 和懒惰(惰性求值) Lazy 的计算模式之间进行选择：

- 渴望(及早求值:Eager) / 全部 all: 该模式将计算整个 LCA 模型，包括流和工序对结果的贡献，无论结果是否立即需要在可见编辑器中。虽然这种模式的优点是可以立即提供全面的结果，但它确实需要更多的计算资源和时间，尤其是对于大型复杂模型。

- 懒散(惰性求值:Lazy) /随需应变: (On-demand): 此模式将推迟缴费结果的计算，直到他们被特别要求。懒惰计算具有减少计算量、加快初始模型加载和导航的优点。它根据需要计算和显示结果，更复杂的计算，例如在贡献树和 Sankey 图中，只有在请求 Sankey 图或贡献树时才能完成。在初始计算之后，
结果被缓存，直到结果为关闭。无论你选择“渴望（及早求值 Eager）”还是“懒惰（惰性求值 Lazy）”，计算结果都是一样的！

11.2 结果分析 Result analysis

计算完成后，编辑器中将显示包含结果的窗口。查看下面的详细信息。

一般信息 General information

“一般信息”选项卡提供了有关计算影响的产品系统的详细信息。它包括关于分配方法、目标量、使用的LCIA方法和数据质量信息的信息。

在“对影响类别结果的前五大贡献-概述”部分，您会发现一个条形图，显示了对所选影响直接贡献最高的五个工序。同样，在“流程结果的前五大贡献-概述”部分，您会发现一个条形图，显示了对所选流程直接贡献最高的五个工序。您可以通过从列表中选择来更改显示信息的流。您可以通过单击直方图上方条形图最右侧的图片图标将图表保存为图像。

图 97 计算结果的一般信息选项

在“一般信息 General information”选项卡上，您还可以找到导出和保存结果的选项。有关更多信息，请参阅“保存和导出结果 Save and Export Results”一节。

清单结果 Inventory results

在“清单结果 Inventory results”的前两个表中，您可以找到产品系统的所
有输入和输出流的列表，其中显示了每个流的数量和单位。单击相应的标题单元格，可以按字母顺序、类别、单位或金额对流量进行排序。此外，如果您在输入或输出部分中单击流名称前的箭头符号，您将看到产品系统中使用该特定流的所有工序，从而在结果中贡献其数量。

图 98 清单结果选项

可以在 openLCA 编辑器中复制所有表的内容，并将其粘贴到 Excel 或记事本等其他应用程序中。只需用“Ctrl+Click”（多选）或“Ctrl+A”（整体选择）选择所需信息，然后用“Ctrl+C”或右键单击然后单击“复制”即可复制。

图 99 清单结果的输入部分

选项卡上的最后一个表称为“总需求 Total requirements”。第一列包含产品
系统中包含的所有流程。第二列显示相应过程的输出产品，然后是其数量和单位。

如果在设置计算属性时选中“包括成本计算 Include Cost Calculation”框，则总需求表也将显示每个流程的附加值。有关详细信息，请查看“生命周期成本计算 Life Cycle Costing”部分。同样，如果在设置计算属性时选中“评估数据质量 Assess data quality”框，则根据之前为“工序 Processes”定义的数据质量模式，此表也将在输入和输出部分显示有关数据质量的信息。有关“数据质量”更多信息，请查看专用部分。

图 100 清单分析-增加了价值计算和数据质量信息

➢ 影响分析 Impact analysis

只有在计算向导中选择了影响评估方法后，才能在结果窗口中看到此选项卡。在表中，您可以查看每个影响类别的结果及其参考单位（“影响评估结果 Impact assessment result”列）。您还可以通过单击影响类别名称旁边的箭头展开这些影响类别，选择是否显示对这些影响类别有贡献的相关流程或流（选择要在表上方的“分组依据 Sub-group by:”部分中查看的流程或流）。

如果在设置计算属性时选中了“评估数据质量 Assess data quality”框，则有关数据质量的信息将根据之前为流程定义的数据质量模式显示在影响分析中，请参阅“工序 Processes”一节。

图 101 影响分析，数据质量
工序结果 Process results

“工序结果 process results”选项卡显示了每个过程对影响的直接和总上游贡献。直接贡献/影响是指仅由特定过程产生的贡献/影响。

在“流程对工序结果的贡献 Flow contribution to process results”部分，从下拉列表中选择一个工序，将列出对该工序有贡献的输入和输出流程。在影响评估结果中，显示了所选 LCIA 方法的所有影响类别的结果。

图 102 工序结构选项卡
如果您想导出包括上游贡献在内的结果，请从此选项卡中复制（直接复制到 Excel 表中）。

贡献树 Contribution tree
贡献树将流程贡献分解为流量和影响类别，显示上游总计。此功能允许您检查工序所涉及的每个流程，同样，也可以检查负责影响的流程的每个影响类别，以及百分比。您可以通过单击百分比前的小箭头来访问扩展流程的更多详细信息。通过这种方式，您可以看到哪些工序是给定影响类别的最大贡献者，哪些工序是特定流量排放的最大贡献者。这意味着贡献树可以用于轻松查找生命周期中的影响热点（贡献最高的工序）。

请注意，单个工序的百分比加起来可能不到 100%，因为百分比的贡献总是显示上游（供应链）总贡献，而没有相应工序的直接贡献。但是，您可以通过贡献树中的最后一列“方向贡献”轻松检查工序内直接贡献的绝对数量。
如果在设置计算属性时选中“包括成本计算 Include Cost Calculation”框，则贡献树会将流程贡献分解为成本类别（增加值或净成本），并显示上游总计。经济观点可以通过选择增加值或净成本来改变。

图 104 分析贡献树的成本种类

分组 Grouping
在 openLCA 中，可以对产品进行分组，以查看这些分组产品的累积值。“分组”选项卡中显示的值是直接影响（即不包括上游值）。
要创建新组，请选择编辑器右角的绿色“+”图标。然后命名新组。
图 105 创建一个新的分组

要显示产品系统中尚未分配到组的所有产品和废物流的列表，请单击“其他 Other”。如果要将产品流移动到一个组，请右键单击该流，选择“移动 move”，然后选择所需的组。要同时选择多个工序，请单击一个工序，然后按住“Shift”键并单击另一个产品。如果您想避免选择中间的所有产品，请使用“Ctrl”而不是“Shift”。

图 106 创建一个新的分组

一旦您创建了组并向其添加了产品/废物流，它们对特定流和影响类别的贡献将显示在表中，并显示为柱状图。请注意，显示的贡献是直接的（即没有上游贡献）。要考虑上游贡献，必须将所有上游工序都包括在组中。

图 107 分组结果
单击“分组”编辑器右上角的“保存”图标，可以在“分组”选项卡中保存组。为小组命名，然后按“OK”。每次对任何产品系统进行直接或经典计算时，结果编辑器中将提供这些组。
要打开保存的组，请单击“分组”选项卡右上角的文件夹图标。

![保存和打开分组](image)

图 108 存储和打开分组

➢ **位置 Location**

位置选项卡显示了有关本地化流程、影响和成本类别的特定信息（如果在设置计算属性时选中了“包括成本计算 Include Cost Calculation”框）。这些位置设置在 openLCA 中的流量级别中。

只有当数据库包含位置的几何图形时（例如，通过导入 ecoinvent 几何图形），才会显示位置贡献。

您可以通过单击并移动鼠标来调整地图的位置。要放大或缩小，请使用鼠标上的滚轮。

➢ **桑基(能量平衡)图 Sankey diagram**

桑基图 Sankey diagram 直观地表示了产品系统内流程对特定流程/影响类别
影响。该图显示了该过程的直接贡献和上游总贡献。要在新的编辑器选项卡中打开流程，只需双击即可。

右键单击桑基图 Sankey diagram 图表编辑器中的任意位置，然后选择：
● “专注” ，专注于计算所基于的过程
● 显示/隐藏最小值的“最小值”
● “布局为树”以更新工序的顺序
● “Sankey桑基图的设置”，选择要显示的流量或影响以及截止水平。
● “另存为图像” 将Sankey桑基图保存为 png 文件。

图 110 桑基（能量平衡）图 Sankey diagram
您可以通过点击左上角的“过滤器”图标来访问“设置桑基图 Sankey
diagram”向导。您可以在此处指定：
● 如果要显示流或影响类别
● 成本类别（仅当在计算设置中包含成本计算时才可访问）
● 最小贡献份额（图表中显示的流程的较低贡献限制）
● 图表中可以显示的最大进程数
● 设计设置：连接的主题、方向、形状
图 112 生命周期循环影响分析检查选项卡

11.3 存储和导出结果 Save and export results

单击产品系统结果窗口的“常规信息 General information”选项卡中的“将结果另存为… Save results as…”按钮。或者，您可以选择“文件 File”→在导航面板上方的“保存 Save”中，您可以将结果保存为“结果 result”或系统工序。
保存结果或者根据结果创建系统工序

➢ **保存为结果 Save as result:**
 - 此选项在导航面板中创建文件夹“Results”。
 - “结果”显示一般信息、影响评估结果和清单结果（输入输出）。
 - 将结果保存为“结果”可以方便地访问结果，而无需重新计算。此外，它还可以作为比较计算的一种简单方法，例如LCIA方法的变化。它们也可以直接用于产品系统（见下一段）。

![图 113 保存结果或者根据结果创建系统工序](image)

General information

- **Name**: PET bottle filling
- **Category**: - none -
- **Description**:

Tags

- **Product system**: PET bottle filling
- **LCIA method**: CML-IA baseline

In openLCA 2 you can save results or even create a system process based on the results
另存为系统工序 Save as system process:
此选项可创建一个系统工序，如果您想在另一个产品系统中使用您的结果，该工序将非常有用。此选项还支持隐藏产品系统的详细信息。

在模型图中拖放结果 Drag and drop of results in the model graph
可以通过将结果拖放到模型图中来添加保存的结果：

Drag-and-drop of a result into the input flows of a process

然后，结果的参考流可以直接链接到模型图中的其他工序中。
In the model graph, the reference flow can be linked to the same flow of another process

图 116 在模型图中参考流可以链接到另一个工序的相同流

此选项在与环保署（EPD）合作时特别有用。查看“在供应链中使用 EPD 的结果 Using results of EPDs in the supply chain”部分了解更多详细信息。

➢ 导出结果 Export Results

通过“常规信息 General information”选项卡中的“导出到 Excel”选项或导航面板上方的“Excel”图标，可以将结果导出为.xlsx 文件。

图 117 存储和导出结果

然后，您可以选择最适合您需要的导出配置：

图 118 配置导出设置
12 项目 Project

项目定义 Project define

在 openLCA 中，项目 Project 用于比较多个产品系统 Product system。您还可以使用参数 parameters 来对同一产品系统中的各种选项进行基准测试 benchmark various。结果报告是传达比较研究结果的有力工具。

例如，您可以使用 openLCA 中的一个项目 Project 来比较聚碳酸酯 (PC) 和聚对苯二甲酸乙二醇酯 (PET) 瓶子的生产（您可以免费访问此瓶子案例研究）。这种比较包括评估具有可比较功能单元的两个或多个产品系统：

12.1 建立一个新项目 Creating a new project

完成一个或多个产品系统的建模后，可以创建一个“项目”来比较它们。应该注意的是，为了进行有效的比较，两个工序 process 都应该使用相同的功能单元 function unit。要创建新项目，右键单击“项目 Project”文件夹并选择“新建项目 New project”。命名新项目并提供说明（可选）。
Step 1: Creating a new project

Step 2: Creating a new project

图 120 创建一个新项目
新项目将在编辑器中打开（查看下面的详细信息）：

图 121 项目窗口
➢ 一般信息 General information
在“常规信息 General information”部分，您可以编辑项目名称，也可以添加说明。此外，您还可以添加标记并运行计算。

注意：我们建议在运行计算之前创建一个报告。点击计算设置部分的“创建报告 Create report”，然后在新的“报告 report”选项卡中进行配置。查看报告模板部分了解详细信息。

➢ 计算设置 Calculation setup
在“计算设置 Calculation setup”部分，您可以选择计算的影响评估方法 impact assessment method，以及归一化和加权集 normalization and weighting set（如果适用）（您可以从数据库中导入的方法中选择一个集，但前提是您选择的方法包括一个或您自己创建的方法）。您还可以选择“区域化生命周期循环影响分析 Regionalized LCIA”和“包括成本核算 Include cost calculation”。

图 122 项目设置的计算设置

➢ 比较产品系统 Compare product systems
在“比较产品系统 Compare product systems”部分，单击右侧的绿色“+”图标添加要比较的产品系统。此外，还支持拖放功能。

图 123 增加产品系统到一个项目
每个选定的产品系统都充当计算的“变量 variant”。您可以多次选择同一
产品系统和/或选择不同的产品系统。然后，您可以为每个变量 variant 提供一个新名称、不同的分配方法和金额。例如，要比较应用于同一产品系统的三种不同分配方法，请选择该产品系统三次，然后分别选择不同的分配方法。您还可以决定在结果中显示哪些产品系统。

![产品系统比较图](image)

Project setup, Variants

图 124 项目设置的每个产品系统当变量比较

➢ 参数 Parameters

在“参数 parameters”部分，可以更改变量的参数值。例如，我们可以根据 PET 颗粒的运输距离（200、350 和 500 公里）来比较 PET 瓶生产的影响。在“比较产品系统”部分，您可以为 PET 瓶选择三次产品系统，其中包含运输距离参数 (“distance_A”)。

然后重命名每个变量 variant，并在“参数”部分添加参数“distance_A”，方法是单击右侧的绿色“+”按钮并从可用的按钮中选择它。最后，为每个变量 variant 输入一个新的参数值。

![参数表](image)

Project setup, Parameters

图 125 项目设置的参数

在“项目设置”中配置项目后，单击“创建报告”以配置报告。

12.2 报告模板 Report template

单击计算设置部分中的“创建报告 Create report”后，您可以在新的“报告”选项卡中对其进行配置。当您单击“项目设置”选项卡中的“计算”图标时，此报告将与计算一起生成。默认情况下，报告包含“简介”、“项目变体 Project Variants”、“选定的 LCIA 类别”、“LCIA 结果”、“单个指标结果 Single Indicator Results”等部分，“工序贡献 Process contributions”，和“相对结果 Relative Results”。在“报告”选项卡中，您可以命名报告，添加或删除节，重命名节，编辑其描述，删除右侧带有红色“X”图标的节，并使用向上/向下图标更改顺序。此外，您还可以选择“组件 Component”。例如，应显示哪种类型的图表或表格。配置完所有部分后，请记住在生成报告之前保存项目。
图 126 项目的报告选项卡

我们想强调我们的各种图表，用于交流您的结果，例如：

General Information

Title: Results of project PET allocation comparison

Selected processes (for contribution analyses)

Add section

Introduction

Section: Introduction

Text: This is the following results of the project are shown. This is a default template for the report of the project results. You can configure this template via the project editor by:

```
<p><ul>
  <li>Replacing the text of the sections.</li>
</ul></p>
```

Project Variants

Section: Project Variants

Text: This table shows the name and description of the variants as defined in the project setup. The variant names of the project setup are used for all charts and tables of the other report components.

Component

- Product system description table

Selected LCIA Categories

Section: Selected LCIA Categories

Text: The table below shows the LCIA categories of the selected LCIA method of the project. Only the LCIA categories that are selected to be displayed are shown in the report. Additionally, a user friendly name and a description for the report can be provided.

LCIA Results

Section: LCIA Results

Text: This table shows the LCIA results of the project variants. Each selected LCIA category is displayed in the rows and the project variants in the columns. The unit is the unit of the LCIA category as defined in the EODA method.

Component

- LCIA result table

Single Indicator Results

Section: Single Indicator Results

Text: The following chart shows the single results of each project variant for the selected indicator. You can change the selection and the chart is dynamically updated.

Component

- Indicator bar chart

Process Contributions

Section: Process Contributions

Text: This chart shows the contributions of the selected processes in the project setup to the variant results of the selected LCIA category. As for the single indicator results, you can change the selection and the chart is dynamically updated.

Component

- Process contribution chart

Relative Results

Section: Relative Results

Text: The following chart shows the relative indicator results of the respective project variants. For each indicator, the maximum result is set to 100% and the results of the other variants are displayed in relation to this result.

Component

- Relative LCIA results - bar chart
12.3 项目结果 Project results

点击“计算”后，将打开一个结果选项卡，显示比较的产品系统、影响评估结果和结果贡献（流量与影响类别）。
图 128 项目结果的结果选项卡
要查看报告，请打开第二个选项卡“报告”。

12.4 项目报告 Project report

在报告选项卡中，您将在预先选择的模板中找到计算结果。它被生成为一个 html 文件，其中包含基于 Java 的交互式元素。以下内容直接从报告中提取（Java 元素不能在本手册中显示）:

项目结果例子：灌装对比

项目变体 Project Variants

此表显示了项目设置中定义的变体的名称和描述。项目设置的变体名称用于其他报表组件的所有图表。

<table>
<thead>
<tr>
<th>Variant</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>Poly(carbonate) bottles</td>
</tr>
<tr>
<td>PET</td>
<td>Poly(ethylene terephthalate) bottles</td>
</tr>
</tbody>
</table>

图 129 项目变体（变量）例子
所选 LCIA 类别 Selected LCIA Categories

下表显示了项目所选 LCIA 方法的 LCIA 类别。报告中只显示选定要显示的 LCIA 类别。此外，还可以提供报告的用户友好名称和描述。

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotic depletion</td>
<td>kg Sb eq</td>
<td>Abiotic depletion (fossil fuels) 非生物耗竭（化石燃料）</td>
</tr>
<tr>
<td>Abiotic depletion (fossil fuels)</td>
<td>MJ</td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td>kg SO2 eq</td>
<td>Acidification 酸化</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>kg PO4--- eq</td>
<td>Eutrophication 富营养化</td>
</tr>
<tr>
<td>Fresh water aquatic ecotox.</td>
<td>kg 1,4-DB eq</td>
<td>Fresh water aquatic ecotox.淡水水生物生态毒性</td>
</tr>
<tr>
<td>Global warming (GWP100a)</td>
<td>kg CO2 eq</td>
<td>Global warming (GWP100a) 全球变暖（全球变暖潜势 100 年）</td>
</tr>
<tr>
<td>Human toxicity</td>
<td>kg 1,4-DB eq</td>
<td>Human toxicity 人体毒性</td>
</tr>
<tr>
<td>Marine aquatic ecotoxicity</td>
<td>kg 1,4-DB eq</td>
<td>Marine aquatic ecotoxicity 海洋生物生态毒性</td>
</tr>
<tr>
<td>Ozone layer depletion (ODP)</td>
<td>kg CFC-11 eq</td>
<td>Ozone layer depletion (ODP) 臭氧消耗潜势</td>
</tr>
<tr>
<td>Photochemical oxidation</td>
<td>kg C2H4 eq</td>
<td>Photochemical oxidation 光化学氧化</td>
</tr>
<tr>
<td>Terrestrial ecotoxicity</td>
<td>kg 1,4-DB eq</td>
<td>Terrestrial ecotoxicity 陆地生态毒性</td>
</tr>
</tbody>
</table>

图 130 生命周期循环影响分析类别

LCIA 结果 LCIA results

此表显示了项目变体的 LCIA 结果。每个选定的 LCIA 类别显示在行中，项目变体显示在列中。单位是 LCIA 方法中定义的 LCIA 类别的单位。

<table>
<thead>
<tr>
<th>Indicator</th>
<th>PC</th>
<th>PET</th>
<th>Unit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotic depletion</td>
<td>8.30177e-8</td>
<td>2.05033e-9</td>
<td>kg Sb eq</td>
<td></td>
</tr>
<tr>
<td>Abiotic depletion (fossil fuels)</td>
<td>1.50413e+0</td>
<td>2.06903e+0</td>
<td>MJ</td>
<td></td>
</tr>
<tr>
<td>Acidification</td>
<td>1.54539e-3</td>
<td>9.83064e-4</td>
<td>kg SO2 eq</td>
<td></td>
</tr>
<tr>
<td>Eutrophication</td>
<td>1.78441e-4</td>
<td>6.37300e-5</td>
<td>kg PO4--- eq</td>
<td></td>
</tr>
<tr>
<td>Fresh water aquatic ecotox.</td>
<td>1.42203e-3</td>
<td>2.71658e-4</td>
<td>kg 1,4-DB eq</td>
<td></td>
</tr>
<tr>
<td>Global warming (GWP100a)</td>
<td>4.90240e-1</td>
<td>2.10820e-1</td>
<td>kg CO2 eq</td>
<td></td>
</tr>
<tr>
<td>Human toxicity</td>
<td>6.15706e-3</td>
<td>1.58586e-2</td>
<td>kg 1,4-DB eq</td>
<td></td>
</tr>
<tr>
<td>Marine aquatic ecotoxicity</td>
<td>1.89337e+1</td>
<td>1.60211e+1</td>
<td>kg 1,4-DB eq</td>
<td></td>
</tr>
<tr>
<td>Ozone layer depletion (ODP)</td>
<td>1.43767e-11</td>
<td>8.93323e-12</td>
<td>kg CFC-11 eq</td>
<td></td>
</tr>
<tr>
<td>Photochemical oxidation</td>
<td>1.05529e-4</td>
<td>6.36538e-5</td>
<td>kg C2H4 eq</td>
<td></td>
</tr>
<tr>
<td>Terrestrial ecotoxicity</td>
<td>1.61762e-3</td>
<td>4.97121e-5</td>
<td>kg 1,4-DB eq</td>
<td></td>
</tr>
</tbody>
</table>

图 131 所选生命周期循环影响分析结果例子
Abiotic depletion 非生物耗竭
Abiotic depletion (fossil fuels) 非生物耗竭（化石燃料）
Acidification 酸化
Eutrophication 富营养化
Fresh water aquatic ecotox. 淡水水生物生态毒性
Global warming (GWP100a) 全球变暖（全球变暖潜势100年）
Human toxicity 人体毒性
Marine aquatic ecotoxicity 海洋生物生态毒性
Ozone layer depletion (ODP) 臭氧消耗潜势
Photochemical oxidation 光化学氧化
Terrestrial ecotoxicity 陆地生态毒性

单一指标结果 Single Indicator Results

下图显示了所选指标的每个项目变体的单个结果。您可以更改选择，图表会动态更新（不在手册中，而是在软件本身中）。

图 132 全球变暖潜势的单一指标例子-两种塑料瓶子

GWP single indicator PC vs. PET

工序贡献 Process Contribution

此图表显示了项目设置中所选工序对所选 LCIA 类别的变体结果的贡献。对于单个指标结果，您可以更改选择，图表会动态更新。

相对结果 Relative Results

下图显示了各个项目变体的相对指标结果。对于每个指标，最大结果设置为
100%，并显示与该结果相关的其他变体的结果。

All impact chosen impact categories for PC vs. PET

图 133 全部影响评估种类的相对结果例子

导出项目报告 Exporting a project report

您可以通过单击导航面板上方的“导出报告”图标以 HTML 格式导出报告。当编辑器中的结果窗口打开时，此选项可用。

Exporting a report in HTML format

图 134 导出项目报告

第 13 章 废物处理模型 Waste modelling

废物处理模型定义 waste modelling

废物是指需要处理的任何物质或物体，如没有市场价值的副产品，它可以在产品生命周期的任何阶段生成。在 openLCA 中，由特定的“Flow”类型表示。

- 物流逻辑方法 Material flow logic approach
- 反向进近 Opposite direction approach
物料流逻辑 Material flow logic

这种方法与建模的“实际”方向（即材料流动方向）一致，并在 openLCA 1.7 中引入。废物流是作为废物产生过程的输出而产生的。在废物处理过程中，它们是定量参考，可以在输入端找到。

显示物料流逻辑的模型图。

创建废物处理流程（物料流逻辑）

Creating a waste treatment process (material flow logic)

1. 右键单击“工序 Processes”→“新工序 New process”→“创建废物处理工序 Create a waste treatment process”。
2. 选择（以前创建的）废物流作为定量参考→单击“完成 Finish”。所选择的废物流现在是废物处理工序的输入。

创建废物处理流程、物料流逻辑
遵循物流逻辑的废物产生过程
遵循物流逻辑的废物处理过程

注：如果废物由一个工序消耗，则可以通过勾选“避免的废物”框来进行系统扩展，因为消耗的废物不需要在其他地方进行废物处理。提供将废物作为投入的好处的过程可以被认为是避免了必须在其他地方处理废物的影响。Note: If waste are consumed by a process, system expansion can be applied by checking the box "Avoided waste", as the waste consumed does not need waste treatment elsewhere. A process providing the benefit of using waste as an input can be credited with the avoided impact of having to treat that waste elsewhere.

反向进近 Opposite direction approach

相反方向的方法则相反，它可以在不使用废物流的情况下对废物处理进行建模，而使用正常的工艺流程。在 openLCA1.7 之前，这是唯一的选择。这一点仍然值得一提，尤其是如果您使用的是可能不包括废物流的旧数据库。由于废物是废物处理过程的定量参考，但定量参考不能作为过程的输入（因为它本质上是过程的主要产品/输出），因此废物处理被视为向废物产生过程提供必要的服务。废物然后表现为废物处理过程的负输出（输入），并且类似地表现为废物产生过程的负输入（输出）。

相反方向的方法则相反，它可以在不使用废物流的情况下对废物处理进行建模，而使用正常的工艺流程。在 openLCA1.7 之前，这是唯一的选择。这一点仍然值得一提，尤其是如果您使用的是可能不包括废物流的旧数据库。由于废物是废物处理过程的定量参考，但定量参考不能作为过程的输入（因为它本质上是过程的主要产品/输出），因此废物处理被视为向废物产生过程提供必要的服务。废物然后表现为废物处理过程的负输出（输入），并且类似地表现为废物产生过程的负输入（输出）。

显示反向近进的模型图。
创建废物处理流程（反向方法）

Creating a waste treatment process (opposite direction approach)

1. 将废物（类型：产品）流添加为废物处理过程的负输出。
2. 将废物（类型：产品）流作为所考虑的废物产生过程的负输入。

创建废物处理流程，采用相反的方法。
遵循相反方向方法的废物处理过程。
之所以有两种不同的方法，是因为不同的数据库以不同的方式管理废物，即
并非所有数据库都存在废物流。

第 14 章 分配 Allocation

分配的定义 Allocation

当一个工序 process 涉及多个产品时，您必须分配每个产品所产生的影响。这种过程的典型例子是热电联产 (多输出) co-generation of heat and power (multi-output) 或垃圾填埋 (多输入) landfill (multi-input)。可以使用两种不同的策略来处理这些分配问题；分区 partitioning 或系统扩展 system expansion。

分区 Partitioning

在 openLCA 中有三种分区分配方法 three allocation by partitioning methods:

- 物理分配 Physical allocation：根据产品之间的物理关系进行划分，例如质量。
- 因果分配 Causal allocation：基于假设或以往对不同产品的相对影响的研究进行划分。
- 经济分配 Economic allocation：根据产品之间的经济（成本或收入）关系进行划分。因此，必须添加成本/收入方面的经济属性才能适用。

下面是一个示例，说明了这三种不同的方法是如何在 openLCA 中应用的。在该实施例中，1 公斤木材和 0.3 公斤树皮由 1 公斤锯木（以树皮下的实木测量）制成。
Inputs and Outputs for our example, note that economic properties have been added

Physical allocation, Causal allocation, and Economic allocation allocation coefficients can be reviewed in the "Allocation" tab. Select the "Calculate factors" button to automatically calculate the values for the three allocation methods.
物理分配 (physical allocation) 系数是根据产品（木材和树皮）物理单位之间的比例计算的。由于木材和树皮的产量分别为 1 公斤和 0.3 公斤，分配系数分别为 0.77 和 0.23。

对于因果分配 (causal allocation)，可以插入一个假定的比率。在这个例子中，我们假设木材造成 60% 的影响，而树皮造成 40% 的影响。

在经济分配 (economic allocation) 的情况下，我们假设木材的收入为 1 美元/公斤，树皮的收入为 0.4 美元/公斤。

注意：为了分配到工作中，主要产品 (main product) 和副产品 (by-products) 需要具有相同的流动特性。

注意：当货币不可用时，可在导航平面的“背景数据 (Background data)”下的“货币 (Currencies)”下创建新货币。可以根据设置的任何参考货币添加转换系数。
系统扩展 System Expansion

应用系统扩展意味着通过提供副产品 by-product 可以避免对建模过程的影响。例如：如果一个工序产生电力，并将热量作为副产品，那么如果热量从其他地方供应，就会产生负荷。在 openLCA 中，可以通过检查副产品的“避免的产品 Avoided product”框来执行此操作。Applying system expansion means that the process you are modeling is credited with the impact that is avoided by supplying the by-product. For example: if a process produces electricity and has heat as a by-product, it can be credited with the load that would appear if this heat was supplied from elsewhere. In openLCA, this can be performed by checking the box of "Avoided product" for the by-product.

图 139 在输入输出选项卡中的避免产品检查盒

重要的是，存在提供避免的产品流的过程。当创建“产品系统 Product system”时，该提供者出现在“模型图 Model graph”中，但作为示例流程输出端的提供者。

图 140 避免产品的例子
模型图中热量被认为是避免的，除了它是工序输出之外，还有相应的提供者。
参数的定义 Parameters

参数 parameters 可以用于工序 process、影响评估方法 impact assessment method、产品系统 product system、项目 project 和数据库 database 级别。参数 parameters 显示变量 variables，而不是输入 input 或输出 output 中使用的具体值。它们可以定义为简单的值 simple values、公式 formulas 或复杂的函数 complex functions。参数可以相互覆盖（例如，过程中参数的值可以在产品系统/项目级别上覆盖）。

在实践中，参数有助于敏感性分析 sensitivity analyses，以估计模型的任何特定方面的修改将对研究结果产生多大影响。在处理可能更改的初步数据时，或者在更改某些输入/输出值的同时创建同一系统的不同版本时，参数也很有用。

15.1 参数类型 Parameters types

在 openLCA 中，您可以找到三种类型的参数：

- 可以找到“全局参数 Global”，这些参数在所有级别上都有效。
- “输入参数 Input”是仅对保存它们的工序/LCIA 方法/产品系统有效的参数。
- “从属参数 Dependent”是在其公式中包含输入或全局参数的参数。下图举例说明了 openLCA 上的视图。
可以在工序或影响评估方法中创建全局、输入和相关参数。这些也可用于使用工序或影响评估方法的产品系统和项目。无法在产品系统或项目级别上创建新参数。

图 142 全局、输入、从属参数的例子

创建参数 Create a parameter

要创建全局参数，请执行以下操作：
1. 右键单击导航面板中“指标和参数 Indicators and Parameters”部分的“全局参数 Global parameters”。
2. 选择“新建参数 New parameter”。
3. 输入名称、说明（可选）、类型（输入或相关参数）和金额，然后单击“完成”。

图 143 创建全局参数
4. 创建全局参数后，编辑器中将打开一个常规信息窗口，您可以添加标记 tags 和不确定性 uncertainty。

5. 要在工序 process 中加载您创建的全局参数，请在流程或影响评估方法的 “参数 Parameters” 选项卡的 “全局参数 Global parameters” 部分选择 “重新加载 reload” 按钮。

6. 还可以通过单击“数据库 database” 下的“参数 parameters”来查看和编辑全局参数 “内容 content”。这将打开一个窗口，作为（新的!）功能，可以通过双击“不确定性单元格 Uncertainty cell”来编辑不确定性。

图 144 全局变量的一般信息

Set a new value for electricity_CL
创建输入 Input parameter 和从属参数 dependent parameter，请执行以下操作：
1. 打开打开的工序的“参数”选项卡。
2. 选择输入/相关参数部分右上角的“+”。
3. 指定名称、值、不确定性（对于输入参数）和描述。
4. 从属参数的情况下，可以使用公式将其链接到它所依赖的参数。

注：右键单击输入/从属参数并选择“转换为全局参数”，即可将其转换为全局变量。
可以通过“使用情况视图 usage view”功能检查数据库中参数的使用情况（右键单击参数并选择“使用情况 usage”）。

注意：使用公式解释器（“首次运行 openLCA”中的“工具”部分）检查要包含在相关参数中的函数。

当您编辑参数名称或值时，它现在将在整个数据库中自动更新，例如，如果在从属参数的公式中使用该参数，它将自动更新。

参数集 parameter sets: 创建一些参数，分配不同场景的值，然后保存这些场景并在同一产品系统中选择它们。产品系统部分的参数部分提供了一个示例。

15.2 参数层次结构 Parameter hierarchy

如果同一个参数在不同级别上具有不同的值，则系统的层次结构将确定在计算中哪个参数值优先。最高层次结构 (+) 的参数值覆盖较低层次结构 (-) 的值。

参数层次结构的图示如下所示。

例如，如果一个工序与全局参数“x”具有相同的名称，那么在该工序中，该参数将具有进程参数值。而在另一个工序中，如果使用了“x”，它将具有全局参数的值。
15.3 参数集 Parameter sets

openLCA2 中，可以添加所谓的 “参数集 parameter sets”，允许用户在参数场景之间轻松切换。创建参数集时，会在产品系统的计算属性弹出窗口中添加一个新的输入字段。然后，此字段允许您选择应用于计算的特定参数集。
在这个例子中，我们展示了使用参数（parameters）和参数集（parameter sets）来模拟各种场景。工艺电池组包括两种电源和两种运输方式。参数“运输类型（transport type）”和“电能类型（electricity source）”均设置为1，这意味着卡车运输和可再生能源发电将用于计算电池组的影响（见“数量（Amount）”栏1-参数）。

图 149 产品系统-参数集

但是，在电池组产品系统的“参数”选项卡中，您可以通过创建参数集在不同的运输和电力类型之间切换。请参见下图中给出的示例。

图 150 产品系统-选择一个参数集

Product system - Choosing a parameter set
第 16 章 背景数据 Background data

背景数据的定义 Background data

在“背景数据”中，您可以找到用户通常不常参与的所有元素，如单位、来源、位置等。您可以在活动数据存储库中自由浏览此部分。

"Background information in a database"
图 151 数据库中的背景数据信息

位置 Locations

位置可以是地区、国家或地图上的任何其他点。它们对于供应链本地化和计算区域影响非常重要。这里有一个例子，说明当你点击 openLCA 时，它们是如何显示的。

"Example of how locations are shown in openLCA"
图 152 位置例子
第 17 章 高阶话题

本节介绍了 openLCA 的高级方面，并要求对生命周期评估原则、影响评估方法和软件本身的功能有深入的了解。将涵盖以下主题：
⚫ 区域化生命周期分析 Regionalized LCA
⚫ 蒙特卡罗模拟 Monte Carlo Simulation
⚫ 生命周期成本 Monte Carlo Simulation
⚫ 数据质量 Monte Carlo Simulation
⚫ 社会方面 Social aspects

看看我们的互动论坛 ask.openLCA，可找到最新的用户问题和答案。

17.1 区域化生命周期分析 Regionalized LCA

使用 openLCA，您可以执行区域化的影响评估，说明过程发生地的具体条件和特征。通过参数，您可以定义影响的区域特征。区域特征和地理位置信息包含在可导入 openLCA 的 GeoJSON 文件中。

如何操作区域化生命周期分析

检查 openLCA 中的位置

区域化的 LCA 需要了解位置。在 openLCA2 中，数据库中的可用位置显示在数据库 database 下的导航选项卡中→背景数据 background data→位置 location。

图 153 数据库中有效的位置
打开一个，您将看到地理数据，包括纬度、经度和国家代码（例如西班牙
的 ES)，以及 GeoJSON 定义的覆盖区域。也可以使用文本编辑器修改坐标，该编辑器可以通过单击“地理数据”部分的铅笔图标打开。

图 154 一般地理位置数据-例如西班牙

位置也可以导入到活动数据库中，例如从 GIS 软件导入，作为 GeoJSON 文件 File→进 口→另外→GGeoJSON 中的几何图形。 ocations can be also imported in the active database, for instance from a GIS software, as GeoJSON files File → Import → other → geometries from GeoJSON.

图 155 导入位置到一个活动的数据库

或者，用户也可以在 geojson.io 中将位置绘制为多边形、直线或点。
The coordinates text can then be just pasted in the text editor in openLCA, after the creation of a new location (right click on location folder → new location → add name and country code → open the text editor in the geographic data ("pencil" icon) → paste coordinate text from geojson.io).

Use of coordinates text from geojson.io example in the openLCA text editor
将区域特征导入为 GeoJSON 文件

Importing regional characteristics as GeoJSON file

区域特征的数据包含在 GeoJSON 文件中，可以在 openLCA 中导入。要对影响类别进行区域化，请首先转到“影响类别”文件夹并打开现有类别(或创建一个新类别)。然后转到打开类别的选项卡“区域化计算”。在这里，您需要通过点击“打开”并选择笔记本电脑中可用的 GeoJSON 文件（例如以前从 GIS 软件导出的文件）来导入区域特征（例如人口密度、流域面积、特征因子等）。参数是在 GeoJSON 文件导入过程中提取的，可在“GeoJSON 参数”一节中使用。

通过选择参数并单击 GeoJSON 参数部分中的“世界”图标，每个导入的参数都可以在地图中可视化。

将区域特征（GeoJSON 文件）绑定到流

Binding regional characteristics (GeoJSON files) to flows

要计算基于地理空间的 CF 的流需要绑定到 GeoJSON 文件中包含的区域特征，以便 CF 可以根据所选的交换和流程位置而变化。在开放影响类别中“区域化计算”下的“流绑定”部分，添加要区域化的流（使用“+”图标），并使用区域特征导入过程中提取的参数对“公式”字段进行参数化，这些参数可在
“GeoJSON 参数”下使用 "在区域化评估中，从 GeoJSON 文件导出的参数值用于公式评估。相反，如果应用非区域化 LCIA 或没有可用于交换和处理的位置，则在计算中将使用默认 CF 值。

图 160 流绑定和参数化示例

目前，openLCA 无法存储 GeoJSON 参数和流绑定，但您可以通过单击“保存”来保存和导出您的设置。您可以随时通过单击“打开”并选择导出的设置再次导入此配置。

图 161 保存 geojson 参数和流绑定

计算选定位置的 CF （CF 为特征因子 Characterization Factors）

Calculate CFs for selected locations

建立区域化 LCIA 方法的最后一步是连接过程位置和 LCIA 方法空间单元。因此，GeoJSON 文件特征和过程几何图形（存储在“位置”中）之间的交集由软件计算，从而为用户选择的位置生成专用特征因子 CF。通过单击“流绑定”部分中的“计算”图标，用户可以定义要为“流绑定”部分中添加的流计算 CF 的位置。
定义计算特征系数的位置

所选位置和流量的最终 CF 可在开放影响类别的“特征系数”选项卡中获得。创建每个选定位置的流和没有特定位置的相同流，并根据位置分配 CF，或者在没有特定位置时使用默认 CF 值。

图 162 定义计算特征系数的位置

图 163 选项卡“特性因子”的示例结果

将区域化影响类别添加到影响评估方法中

Add the regionalized impact category to an impact assessment method

运行 LCIA 时，您需要选择一种影响评估方法。因此，需要将区域化的影响类别添加到将用于计算产品系统影响的方法中。要创建新的区域化方法，右键单击文件夹“影响评估方法”，然后选择“新的 LCIA 方法”。然后，您可以在第一个选项卡“常规信息”的“影响类别”部分添加以前创建的影响类别。
Assign locations to processes and exchanges

To execute regionalized LCIA, please ensure that your processes and/or exchanges have a location. You can do this by going to the 'General Information' tab under the 'Geography' section and selecting the desired location. This can be accomplished by clicking on the tab 'General Information' and choosing the location you desire.

![General information: market for land use change, annual crop - ES](image)

Assigning locations to processes

图 165 给工序安排位置
通过将位置添加到输入和输出中每个流的“位置”字段，可以将位置分配给流程中的交换机。Location can be assigned to exchanges in processes by adding them to the "location" field for each flow in inputs and outputs.

运行产品系统的区域化 LCIA

要为产品系统运行区域化 LCIA，请选择区域化影响评估方法并选中“区域化计算”框。单击“完成”开始计算。

区域化结果可以使用不同的选项卡进行分析，如“影响分析”和“位置”。

图 166 安全位置给交换

图 167 区域化 LCIA 的计算
17.2 蒙特卡罗模拟 Monte Carlo Simulation

蒙特卡罗模拟使用不确定性分布随机改变模型的输入数据。这种计算方法考虑了输入数据中的不确定性，产生了多个计算结果，每个计算结果都有特定的不确定性分布。通常，要进行几千次迭代以获得稳健的结果。

The Monte Carlo simulation randomly varies your model’s input data using uncertainty distributions. This calculation method considers the uncertainty in the input data, resulting in multiple calculation results, each with a specific uncertainty distribution. Typically, several thousand iterations are carried out to obtain robust results.

添加不确定性信息

Adding uncertainty information

openLCA 的第一步是将不确定性数据添加到过程中的所有输入和输出流中。要将不确定性数据添加到流中，请打开一个流程，单击不确定性字段并选择“编辑”。将打开一个弹出向导，您可以在其中进行选择：

- 对数正态分布（几何平均值、几何标准差） Logarithmic normal distribution (Geometric mean, Geometric standard deviation)
- 正态分布（平均值、标准差） Normal distribution (Mean, Standard deviation)
- 三角形分布（最小、模式、最大） Triangle distribution (Minimum, Mode, Maximum)
- 均匀分布（最小值、最大值） Uniform distribution (Minimum, Maximum)
同样，也可以定义参数以及 LCIA 特征因子的不确定性数据。

启动蒙特卡罗模拟

Starting the Monte Carlo Simulation

点击产品系统中的“计算”打开弹出向导“计算属性”。在此向导中，您可以选择计算类型蒙特卡罗模拟并定义迭代次数。

![Monte Carlo Simulation](image)

Calculation properties: Monte Carlo simulation

图 170 计算特征：蒙特卡罗模拟
然后，将打开模拟编辑器。选择“开始”开始计算。所需的计算时间取决于数据库和产品系统的复杂性以及所选的模拟次数。模拟运行时，将显示每个流量和影响类别的结果。

图 171 启动蒙特卡罗模拟运算

蒙特卡罗结果

Monte Carlo Results

模拟的结果可以导出为 Excel 文档。只需点击编辑器右侧的 Excel 图标。

图 172 蒙特卡罗模拟的结果
作为产品系统一部分的所有工序和子产品系统的结果可以单独显示在蒙特卡洛模拟选项卡中。为了便于导航，可以固定各个流程。

图 173 固定/取消固定工序或子系统

蒙特卡罗模拟中两个过程的比较

Comparing two processes in the Monte Carlo simulation

如果您创建一个工序和相应的产品系统，也可以将两个工序与蒙特卡洛模拟进行比较，其中从另一个工序中减去一个工序，以避免重复计算不确定性。

图 174 联合工序相减后结果的蒙特卡罗模拟比较

将一个工序减去另一个工序以便在蒙特卡洛模拟中进行未来比较

17.3 生命周期成本法 Life Cycle Costing

生命周期成本法（LCC）旨在评估产品在整个生命周期中的成本。

openLCA 中的 LCC 和增值法

LCC and Value Added in openLCA
成本在软件中被建模为与产品、废物或基本流相关，这些是过程的输入和输出。它们可以是正的，也可以是负的，而负成本被视为附加值。通常，不需要创建 LCC 计算方法。

openLCA 中的实施遵循了 SETAC 工作组的建议，在成本方面进行了一些修改，如下所示：
- 成本被建模为交换的属性，即过程的输入和输出；
- 成本可以是正的，也可以是负的；负成本是附加值
- 成本显示在流程编辑器中，在交易所的新列中；
- 当计算产品系统时，成本和附加值都是可用的，与清单和影响评估结果平行

增值建立在这一概念的基础上，将增值视为“负成本”，即颠倒符号。Value added builds on this concept, taking value added as "negative costs", i.e. reversing the sign.

更深入地了解如何在工序编辑器中指定成本

A closer look at how costs are specified in the process editor

openLCA 中成本模型和 LCC 计算的起点是工序数据集的成本。在工序编辑器中，可以为流程的每个交换（即每个输入和输出）输入成本。可以同时考虑成本和收入：

图 175 在一个工序中流动的成本和盈利

投入方面就是成本。在产出方面，就产品而言，本栏中的金额是收入（产品已售出），而元素或废物流的释放可能会造成成本，例如二氧化碳的释放或含重金属废水的排放。因此，在输出端为产品输入的任何正数都是指收入，而为基本流输入的每个正数都反映了成本。为了帮助区分两者，成本以紫色显示，而收入以绿色显示。编辑成本或输入新成本，单击成本列，再单击编辑。
图 176 在工序编辑器中输入或编辑成本

将出现一个新窗口，用于指定货币和成本金额。金额应作为绝对值输入，即作为交易所输入的交易所金额的成本；对于第二个图中的例子，它是 0.12 公斤的成本。每个指定单位的成本，例如每公斤，是自动计算的；它们显示在用于输入成本的小窗口中，该窗口在单击成本/收入列中的编辑时打开。

图 177 编辑输入成本的例子

输入或编辑成本、详细信息窗口，以及绝对成本（指定兑换金额的成本）和计算的单位成本。

货币 Currencies

如上图所示，费用以货币表示。在详细成本窗口中，可以在不同货币之间切换成本条目。数据库中所有可用的货币都可以在背景数据下的货币文件夹中找到。对于整个数据库，将选择一种货币作为参考，对于其他货币，将存储汇率以允许以另一种货币重新计算成本。汇率用于计算在过程中选择不同货币时应用的换算系数。

图 178 更换货币的例子
Multi-output processes (Allocation of costs)

In multi-output processes, the consideration of by-products' costs depends on the allocation options selected (see “Allocation”). If no allocation option is selected, then the by-products’ prices are considered as revenue. If one allocation type is chosen, then the allocation factors are applied to exchanges, and not considering by-products costs. The third possibility is choosing “defined in process” option: as before, if one allocation type is chosen, then the allocation factors are applied to exchanges, whereas not considering by-products costs. Instead, if no allocation is chosen, then all costs are calculated, excluding by-products costs.

In database with multiple output processes, understanding by-products costs is important. You have different options to set up allocation methods in the database.
图 180 在计算设置过程中选择 openLCA 中的分配方法。选中“包括成本计算”框！

注：此外，在运行影响评估时，可以通过不选择任何方法单独执行 LCC。

根据这一选择（以及流程本身的定义），将应用以下规则：

- 无 None：考虑所有成本（副产品的价格作为收入）
- 物理、因果或经济 Physical, causal or economic：分配因素适用于交易所，不考虑副产品的价格
- 工序中的定义 As defined in processes：物理、因果或经济分配是根据工序本身的定义来选择的。同样，分配因素适用于交易所，不考虑副产品的价格，也不在流程中选择分配（“无”），考虑除副产品外的所有成本

如果要应用系统扩展，即其中一个输出产品被标记为“避免产品”，计算如下：当在计算属性中未选择分配时，将应用以下公式：

\[\text{Added value} = \text{Price Reference Product} - \text{Price elementary flows/inputs} - \text{Price ByProduct} \]

当选择分配时（例如“按流程定义”），将使用以下公式：

\[\text{Added value} = \text{Price Reference Product} + \text{Allocation factor} \times (- \text{Price elementary flows}) \]

由于您可以定义经济流属性并在工序中保留成本/收入条目，因此假设工序特定信息更精确，并应用以下规则：

当选择了经济分配，并且所有输出产品都具有在工序编辑器中定义的经济价值（收入）时，将采用这些值。但是，如果并非所有产出产品都定义了收入，则将使用经济流量特性进行计算（如果有）。
另一个重要问题是通过不确定性模型来考虑市场的可变性。OpenLCA 提供了一个列，将不确定性分配给流程的输入和输出，而不是直接分配给价格。这可以通过将价格设为参数并直接为其指定不确定性来解决。

可用数据 Available Data

Ecoinvent 数据库 v.3.3 以 openLCA 格式提供了除废料及其处理外的所有产品的价格。否则，可以在每个流程的输入/输出部分手动插入价格。数据库中有几种货币可用，对于整个数据库，可以选择一种货币作为所有其他货币的参考。

该软件允许对不同工艺或国家的相同材料的不同价格进行建模，因为与材料相关的每个参考单位的价格是开放的，并且可以在产品系统的工艺中更改。这样，就不需要创建具有不同名称和相关价格的相同材料。

一个小的案例研究示例 A small case study example

作为一个例子，下面将介绍一个小的案例研究。案例研究取自 Moreau 和 Weidema (2015)，他们又参考了 Heijungs 及其同事的一份出版物 (Heijungs 等人，2013) 并在 openLCA 中进行了重建。

案例研究是关于木椅的生命周期的，木椅的功能单元定义为在椅子上坐十年。总的来说，椅子的使用寿命假设为 2 年，这是相当短的。简化的生命周期仅由几个过程组成：

- 木材生产 Production of wood
- 电力生产 Production of electricity
- 椅子的生产 Production of the chair
- 椅子的使用 Usage chair
- 坏椅子的处理 Disposal of the broken chair

这些工艺之间的成本和材料交换如表 1 所示。由于功能单元为 10 年使用年限，因此需要 5 把椅子。

椅子案例研究：流程、实物交换、成本和附加值 (Moreau 和 Weidema，2015 年，修订)。
图 181 椅子的成本研究案例

在 openLCA 中，已经创建了流程，并建立了一个产品系统，这些流程在其中交换其产品。请注意，按照典型的 ecoinvent（和 SimaPro 等）寿命终止治疗建模，椅子的处置（寿命终止）建模为为椅子的使用提供服务。

图 182 openLCA 中模型图中创建的产品系统

这个页面的第一张图已经显示了一个有成本的过程的例子：椅子的生产。当计算产品系统时，可以获得成本和附加值的几个结果摘要。例如，在流程贡献选项卡中，有一个新的部分“成本/附加值”可用，它显示了不同流程对最终成本和附加值结果的贡献。可以在成本和附加值之间切换：成本是增值乘以-1，即为一个过程“购买”的输入产品的成本减去生成产品的价格。
例如，对于椅子的生产，净成本为 (5+10) € -25 € = -10 €；对于产品系统中所需的 5 把椅子，金额为-50 欧元。在贡献树中，除了 LCIA 类别和基本流程外，还可以将附加值和生命周期成本作为新的部分提供。

openLCA 免费提供了一份关于如何在 openLCA 中进行 LCC 研究的详细文件。带有案例研究的数据库可在此处下载。

17.4 数据质量 Data Quality

数据质量的定义 Data quality

数据质量是生命周期评估（LCA）研究的一个关键方面，ISO 14040 和 ISO 14044 标准对此进行了阐述。openLCA 为 LCA 模型中的数据质量输入、管理和计算提供了广泛的支持。在我们开始之前，让我们提醒一下，在 ISO 14040 中，数据质量被定义为符合目的。

下面，我们将描述如何在 openLCA 中处理数据质量。

选择数据质量系统 Choosing a data quality system

首先，您需要定义一个数据质量流模式。如果您生成一个包含完整参考数据的数据库，我们将为您提供两个数据质量系统。您可以在“常规信息 General information”选项卡中选择其中一个，请参阅“工序选项卡内容 Process tab content”：
图 184 具有完整参考数据的数据库中的可用数据质量系统
您也可以根据自己的标准创建自己的数据质量系统或修改现有的质量系统。在 openLCA 中，假设所有数据质量系统都遵循谱系矩阵 “风格”，即有按类评估的数据质量指标，从好到坏。这些谱系矩阵可以从头开始定义，但 openLCA 已经包含了一些预定义的数据质量系统。

图 185 根据 ILCD 数据质量系统要求的数据质量系统
要创建新的数据质量系统，右键单击“数据质量系统 Data Quality Systems”目录，然后选择“新建数据质量系统 New data quality system”。然后您可以添加指标、分数和不确定性。

图 186 建立一个新的数据质量系统的步骤

处理数据质量 Working with data quality

现在，您可以为流程、流程和社会方面选择一个数据质量系统。
1. 流程的数据质量信息必须在流程窗口的“常规信息 General information”选项卡的“数据质量 Data quality”部分中定义。
另一方面，流量和社会评估的数据质量信息需要在“输入/输出 Input/Output”选项卡或“社会方面 Social aspects”选项卡的数据质量列下选择，请参阅“流程选项卡内容”。

数据质量系统可以在活动数据库的“指标和参数 Indicators and parameters”部分的“数据质量系统 Data quality systems”目录中的可用系统中进行选择。
您可以访问导航面板中文件夹“数据质量系统 Data quality system”中的现有数据质量系统。例如，您可以使用 Andreas Ciroth 博士改进的 ecoinvent 数据质量系统（点击此处阅读完整报告）。当您在编辑器中打开数据质量系统时，您会看到一个“常规信息 General information”选项卡。该选项卡显示各种指标的得分，并提供为这些指标分配不确定性的选项，如下图所示。

图 189 在一个激活数据库中的数据质量路径

图 190 数据质量系统的显示和分数
设置 Setup

要在计算过程中访问数据质量，请在设置计算属性时选中“评估数据质量 Assess data quality”框。

![图191 选中包含数据质量评估的框](image)

然后，单击“下一步”，将打开“数据质量属性”窗口，允许您访问数据质量评估的详细信息。

![图192 设置数据质量评估](image)
结果 Result

计算完成后，结果窗口将在编辑器中打开。您会注意到，清单分析的数据质量现在显示在清单分析选项卡中，并带有颜色编码的数字。

<table>
<thead>
<tr>
<th>Sub-category</th>
<th>Amount</th>
<th>Unit</th>
<th>R</th>
<th>C</th>
<th>T</th>
<th>G</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>in ground</td>
<td>0.23498 kg</td>
<td></td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>in ground</td>
<td>8.40286E-5 kg</td>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0810: Quarrying of stone, sand and clay</td>
<td>7.79835E-5 kg</td>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0810: Quarrying of stone, sand and clay</td>
<td>5.02312E-6 kg</td>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>in ground</td>
<td>0.11672 kg</td>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0520: Mining of lignite</td>
<td>0.11219 kg</td>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>0520: Mining of lignite</td>
<td>0.00274 kg</td>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>in ground</td>
<td>2.68976E-5 kg</td>
<td></td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Inventory analysis - data quality information

图 193 数据质量信息的清单分析

数据质量系统评价的列的缩写是可靠性 Reliability、完整性 Completeness、时间相关性 Temporal correlation、地理相关性 Geographical correlation、未来技术相关性 Future technical correlation，请参阅“工序 Processes”。

以类似的方式，在执行计算之后显示影响分析选项卡的数据质量。

Impact Analysis - data quality

图 194 数据质量的影响分析

17.5 社会方面 Social aspects

openLCA 还可以用于对任何产品或项目进行社会生命周期评估（SLCA = social lifecycle assessments）。SLCA 是可持续性评估的一部分，重点关注产品整个生命周期的社会影响。执行 SLCA 的准则由联合国环境规划署（UNEP = United Nations Environment Programme）制定（上次更新于 2020 年），可在其网站上免费访问。

与传统的环境生命周期评价类似，SLCA 也有使用背景数据库 background databases。在 openLCA 中，PSILCA 和 SHDB 是可以使用社会数据库的示例。您还可以集成 SOCA，这是 ecoinvent LCI 数据库执行 SLCA 的附加组件。社会 LCA 数据库可在 openLCA Nexus 的数据库部分找到。仅当流程具有社会相关信息时，此部分才会显示内容。
在一个活跃的社会数据库中，你可以在“指标和参数”目录中找到“社会指标 Social Indicators”。

要了解有关任何社会指标的更多信息，您可以双击它。在“常规信息 General information”选项卡中，将显示有关测量单位、评估模式和活动变量的其他信息。

图 195 “指标和参数”目录中的社会指标

图 196 社会方面的一般信息
可以在“Social Aspects”选项卡中查看每个流程的社会指标信息。可以显示原始值、风险水平（根据“原始值 raw value”的数量评估）、活动变量、数据质量、评论和来源等信息。风险评估指标以活动变量为特征。例如，就目前而言，所有指标将工作时间作为活动变量。要了解更多关于这一点和每个社会指标的信息，建议访问 nexus 网站上的 PSILICA 手册。

18.1 为目标产品创建新工序 Creating new processes for target products

要在 openLCA2 中，您必须创建目标产品的流程。在下图中，显示了各种流程，每个流程都是根据 EN15804+A2 的生命周期阶段命名方法生成的，并保存在各自的文件夹中。这些流程的创建在开放式生命周期评价中以通常的方式进行（请参阅创建新流程一节）。
建议您确保引用流属性与声明的单元匹配，并且在每个生命周期阶段都是相同的。

图 199 创建和存储工序来建立一个环境产品声明

18.2 从您的工序创建产品系统 Create product systems from your processes

在下一步中，必须根据各自的流程创建产品系统。要执行此操作，请转到相应流程中的“常规信息 General information”选项卡，然后单击“创建产品系统 Create product system”。对 EPD 中应包含的所有流程执行此操作，以包含所有相关模块。
18.3 计算产品系统
Calculate the product systems

创建产品系统后，可以选择 LCIA 方法计算影响结果。

1. 要将结果包括在 EPD 中，必须计算产品系统。要执行此操作，请转到产品系统的“常规信息 General information”选项卡，然后右键单击“计算 Calculate”。

这必须针对您想要包含在 EPD 中的每个产品系统单独执行。
2. 点击“计算”后，您将看到如下界面。在这里，您现在必须选择要使用的
影响评估方法，并选择计算类型“Eager 渴望/All 全部”。之后，结果将自
动显示。

![图202 产品系统计算中影响评估方法的选择](image)

18.4 存储结果 Save your results

openLCA 允许存储结果，以便将其用于 EPD 或进一步计算。
1. 要保存产品系统的计算结果，请转到该特定结果的“常规信息 General
 information”选项卡。单击“将结果另存为”。在打开的窗口中选择“存为
 结果 As a result”。

![图203 结果中的一般信息选项卡](image)
2. 结果现在已保存并可在文件夹“结果 results”下使用。EPD 中可能包含的所有产品系统的计算结果必须另外保存。

2.1 导航磁力窗口显示结果

图 204 导航磁力窗口显示结果

18.5 创建环境产品声明 Creating EPDs

可以创建 EPD 结构，以便使用生命周期阶段的官方命名法存储信息。

1. 要创建新的 EPD，您现在可以右键单击文件夹“EPD”并选择“新建 EPD”。
在打开的窗口中，请说出环保署的名字。

图 205 创建一个新的环境产品声明（EPD）

2. 接下来，您需要导航到环境产品声明 EPD “一般信息 General information”下的“模块 Modules”部分。在这里，您需要添加所有应该包含的模块。您必须在“一般信息 General information”下的相应部分中选择您申报的产品（流程）。
3. 现在可以通过点击“文件 File”并选择“导出 Export”来导出已完成的 EPD。选择“JSON-LD”并点击“下一步 Next”。应选择您的 EPD。单击“完成 Finish”。您的 EPD 现在保存在您选择的文件夹中。这允许与环保署交换信息，并将其发送给责任方。

"Modules" section in an EPD

图 206 一个环境产品声明（EPD）中的模块部分

18.6 从不同来源中增加 EPD 结果 Adding EPD results from various source

EPD 通常以 pdf 文档的形式提供，具有独特的设计，因此无法直接导入任何 LCA 软件。但是，一项新功能允许您手动添加公开 EPD 的结果，或使用其 ILCD 文件添加 EPD。

手动增加环境产品声明 Adding EPDs manually

1. 您需要通过单击“结果文件夹 Results folder”，然后单击“新建结果 New results”来创建一组自定义结果。它将创建一个需要填充其他信息的模板。
2. 接下来，可以通过添加相应方法中的影响类别来完成结果。可以通过点击“影响评估 Impact assessment”字段并浏览可用类别列表来完成。

3. 添加所有必要影响类别后，可以看到相关影响的完整列表。然而，重要的是将负担与代表功能单元的特定流联系起来。因此，可以通过右键单击“清单结果-输出 Inventory results - Outputs”字段并从列表中选择正确的选项来选择现有流或自定义流。完成后，需要右键单击目标流并将其设置为参考。输出流量必须与原始 EPD 相对应，或者根据具有所有相关排放的新功能单元进行转换。
图 210 完成的结果

18.7 从 EC3 中获得环境产品声明 Get EPDs from EC3

有了 openLCA2，现在可以通过建立透明度将 EPD 下载或上传到 EC3（建筑中的碳计算器，EC3 = Embodied Carbon in Construction Calculator）；需要访问 (帐户) 相应的 OpenEPD API。
1. 要使用 openLCA 访问 EC3，请在“工具 Tools”下打开 → 从 EC3 获取 EPD。将打开以下窗口：To access the EC3 with openLCA, open under Tools → Get EPDs from EC3. The following window will open:

图 211 打开建筑运输中的建筑嵌入碳计算器的环境产品声明
2. 插入您的用户名，点击“登录”并插入您的 EC3 帐户密码。连接后，您可以通过 URL/ID 下载，或直接在 openLCA 中搜索和导入 EPD。

3. openLCA 将尝试自动将 openEPD LCIA 方法与活动数据库中的 openLCA 指示符进行匹配，但这可以由用户单独配置。

图 212 登录后下载或导入环境产品声明

图 213 环境产品声明匹配活动数据库的提示符
4. 输入的电子产品将会显示在电子产品下的导航面板上。EPD 可以包含多个结果模块，因此结果也是独立的模型，可以在 EPD 中灵活组合，它们具有定量参考，可以用于产品系统。

5. 也可以将您的 EPD 草稿上传到 EC3 服务器。为此，打开 EPD 并选择“在 EC3 上上传（更新）EPD 结果”。为此，请填写所有所需信息，特别是申报产品和 URN。

6. 然后会出现一个新窗口，您可以点击“上传（更新） Upload (Update)”。
图 216 点击上传按钮进行上传操作
然后你可以在下面检查你上传的版本 https://buildingtransparancy.org/ec3/epds/urn
（将“URN”替换为您的特定URN）。

18.8 在供应链中使用EPD的结果 Using results of EPDs in the supply chain

引入或保存的结果可以直接用于供应链。
1. 流必须添加到目标清单的输入中，该目标清单将与相应的结果相连接。

图 217 连接影响到一个清单
2. With providers selected differently, results can only be connected through "model graph". As a result, the first step is to create a product system. After the supply chain is created, open the product system element under the "model graph" and drag the results to the editor area. It is important to track and select the correct reference flow to connect the results.

![EPD example](image)

Figure 218: Using an EPD example

3. Once the results are in the editor area, they can be manually connected to the flow. This is done by dragging the connection from the target flow to the results element.

![EPD example](image)

Figure 219: Connecting an EPD example manually

4. After establishing all connections and setting the target quantity, it is important to save all changes before conducting the impact assessment. Then, you can analyze the results as usual.

![EPD example](image)
第 19 章 团队协作 Collaboration in Teams

随着生命周期评估 (LCA = Life Cycle Assessment) 的普遍进步和生命周期思维 (LCT = Life Cycle Thinking) 的传播，关于生命周期评估研究的合作工作变得越来越普遍，例如在同一地点的公司或团队内，在国际层面的多边项目 (如研究) 的不同地点的公司或团队内，在公司、大学或咨询公司等各种实体的参与下，以及在执行承包商和客户之间共同开发 LCA。此外，将参考数据用于背景过程、基本流程、影响评估方法和现有 LCA 模型的其他元素正变得越来越普遍。通常，共享参考数据以更新数据库并分发给 (也) 分发的用户会带来技术问题。此外，任何想要创建一致的生命周期评价数据库的人都有兴趣通过外部评审员对生命周期评价模型进行质量保证和评审。

LCA Collaboration Server 生命周期分析 协作服务器 现在是 2.0 版本，是一个服务器应用程序，它补充了 openLCA (LCA 桌面应用程序)。它是免费的，并可根据需要提供支持。

如果您想了解有关协作服务器的更多信息，请访问协作服务器手册。

图 220 生命周期分析协作服务器

第 20 章 备忘录 OpenLCA cheat sheet

技巧备忘单 Trick cheat sheet

本节旨在成为您的快速参考指南，为您提供基本提示、快捷方式和关键见解，以最大限度地提高您在使用 OpenLCA 时的效率和生产力。无论您是寻求省时技术的经验丰富的用户，还是寻求全面概述的新手，这份备忘单都将使您能够轻松自信地浏览 OpenLCA 的功能。

让我们一起深入了解并释放 OpenLCA 的全部潜力。愉快的探索！

20.1 使用 Usage

1. “使用 Usage”功能允许用户找到所选“流程 Flow”、“工序 Process”等的使用位置。为此，右键单击数据库元素：
2. 点击“使用”后，以下窗口将显示所选工序的使用位置：

图 221 使用功能找流和工序

图 222 在使用菜单下找到的工序的位置
此选项允许您知道工序的使用位置，例如，如果您想删除连接的工序/流，则此选项非常有用。

注：此外，每个产品或废物流程中的“在工序中使用”部分（“常规信息 General information”选项卡）会向您显示更详细的“使用 Usage”信息。

20.2 工序中的直接影响计算 Direct impact calculation in processes

openLCA 提供了直接计算过程影响的灵活性，而无需创建产品系统。您可以直接在流程中使用 “影响分析 Impact analysis” 选项卡 (有限的计算选项) 或 “直接计算 Direct calculation” 选项卡 (所有计算选项)。

“影响分析”选项卡中的“直接计算”

Direct Calculations in the Impact Analysis tab

如果您不想生成产品系统来计算工序的影响，可以直接使用流程中的“影响分析 Impact Analysis”选项卡！这一特性对于产品设计阶段的可持续决策特别有用。它使您能够直接从数据库中选择对环境影响较小的原材料和服务，而无需生成产品系统。

在流程的“影响分析 Impact Analysis”选项卡中，工序的直接影响将根据您可以直接在选项卡中选择的影响评估方法自动计算，结果将相应地动态更新。

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>Amount</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Abiotic resource depletion</td>
<td>3.22237E-12 kg</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Acidification</td>
<td>0.00000 mol</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Aquatic eutrophication</td>
<td>3.62433 trovis</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Aquatic toxicity</td>
<td>0.00131 kg</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Cancer human health effects</td>
<td>-1.48729E-11 trovis</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Climate change</td>
<td>2.00357 kg</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Contaminated soil</td>
<td>0.00019 kg</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Land use</td>
<td>4.37506 trovis</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Non-cancer human health effects</td>
<td>2.65251E-9 trovis</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Other</td>
<td>3.03747E-3 m3</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Ozone depletion</td>
<td>1.15984E-15 kg</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Photochemical ozone creation</td>
<td>0.00462 kg</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Respiratory inorganics</td>
<td>1.6259E-7 trovis</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Terrestrial eutrophication</td>
<td>0.00480 mol</td>
<td></td>
</tr>
</tbody>
</table>

Impact analysis of a process

要深入了解 LCA 计算的主题，您可以浏览“LCIA 方法和类别”和“计算和结果分析”部分。
常规信息选项卡中的直接计算

Direct calculation in the general information tab

在不生成产品系统的情况下执行计算的另一种方法是使用流程的“常规信息 General information”选项卡中的“直接计算 Direct calculation”按钮。此功能生成包含数据库中所有进程的内存中产品系统。

然而，只有当这些过程之间存在明确的联系时，才能获得准确的结果。

例如，每个产品都应该有一个负责生产的工序，每个产品输入都应该分配一个默认的提供者。确保数据库中工序之间连接（链接）的完整性，您可以导航到“数据库→检查链接属性 Database → Check linking properties”或在选择“直
Direct calculation

The direct calculation creates an in-memory product system of all processes in the database. This only gives correct results when there are unambiguous links between these processes (e.g. every product is only produced by a single process or every product input has a default provider set). You can also check the linking properties of the databases under 'Database > Check linking properties'.

Check linking prior calculation

图 225 计算前检查链接

“直接计算 Direct calculation”的主要优点是它在内存使用方面的效率。它消除了提前创建产品系统的需要，提供了一个实用的解决方案。这对于 PSILCA、exiobase 和 GaBi 等大型数据库尤其有利。

20.3 软件和 Excel 表格 OpenLCA and Excel

粘贴数据 Paste data

只要 Excel 表具有与 openLCA 中工序输入/输出表相同的列结构和列标题，就可以在 openLCA 中将数据从 Excel 简单地复制到工序中。请参见下文。

Excel template

Paste Excel data into a process in openLCA

图 226 粘贴 EXCEL 表格数据到 OpenLCA 的工序中
复制数据 Copied data

要选择要复制的特定列和行，请执行以下步骤：
1. 单击表中的单元格开始选择。
2. 按住键盘上的“Shift”按钮。
3. 单击表中的另一个单元格以标记行和列的范围。初始选择和最终选择之间的所有行和列都将高亮显示。
4. 在选定区域内单击鼠标右键。
5. 从上下文菜单中选择“复制选择”。

Copied Excel data in openLCA

图 227 复制 EXCEL 数据到 OpenLCA 软件

Copying data from openLCA tables

图 228 从 OpenLCA 总复制数据到 EXCEL 表格
20.4 Tags

In openLCA, **tags** are a feature for organizing and searching data objects in the software. They provide a way to assign labels or keywords to elements in the LCA model, such as processes, flows, or impact categories. Each element in openLCA can have multiple tags associated with it. To add a tag, go to the task, process, product system, or other category's **General Information** tab, then click **Add a tag**. A wizard will appear, allowing you to specify the name and description of the tag.

Usage of Tags

Additionally, users can filter on tags using the **Collaboration Server**. If a consistent tag system is used within a team, it's a good way to locate and organize shared data.

Contact Information

OpenLCA is a free software developed and managed by GreenDelta. For more information, contact GreenDelta GmbH, Kaiserdamm 13, 14057 Berlin, Germany. Email: gd@greendelta.com. Website: www.greendelta.com. Phone: +49 30 62 924 – 319, Fax: +49 30 48 496 – 991.